рефераты рефераты
Главная страница > Дипломная работа: Усилитель мощности миллиметрового диапазона длин волн  
Дипломная работа: Усилитель мощности миллиметрового диапазона длин волн
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Усилитель мощности миллиметрового диапазона длин волн

Механизм снижения выходной мощности также связан с переносом вещества с поверхности нагретых частей спирали на диэлектрические опоры ЗС. При незначительных тепловых нагрузках на спираль время, в течение которого могут быть обнаружены негативные последствия для ЗС со спиралью из МАГТ-0,2, превышает 1 млн. ч. В противном случае это время может сокращаться в зависимости от температуры спирали в десятки и более раз. Возрастание СВЧ-потерь в результате металлизации диэлектрических опор приводит к увеличению тепловой нагрузки на спираль и увеличивает скорость деградации параметров такой ЛБВ [A3].

Добиться необходимого уменьшения скорости переноса вещества с поверхности спирали на опоры ЗС можно улучшением теплоотвода от спирали ЗС и уменьшением токовой нагрузки на спираль. В разрабатываемых ЛБВ улучшение теплоотвода достигается применением деталей из материалов с высокой теплопроводностью, например медных оболочек ЗС , и применением пластичных материалов для создания необходимых тепловых контактов в местах сопряжения теплоотводящих элементов конструкции. Уменьшение токовой нагрузки, как следует из анализа токопрохождения в ЛБВ с электронным КПД более 30%, возможно за счет улучшения токопрохождения в статическом режиме и уменьшения тока, возвращенного из коллекторов. Такая работа была выполнена на основе метода конечных элементов при моделировании электронного потока в аксиально-симметричных узлах ЛБВ .

Разработанные ЛБВ средней мощности сантиметрового диапазона отличаются высоким техническим уровнем, КПД различных типов ЛБВ принимают значения 45... 55 % , а долговечность достигает 100 тыс. ч. Указанные значения КПД получены при использовании ЗС с  = 0.8...0,9 и малыми СВЧ-потерями, долговечность ЛБВ обеспечивается надежностью конструкций узлов и особенностями технологии, включающей специальные методики прогнозирования их надежности и ресурса. Исследованы пути увеличения КПД ЛБВ до 60% и долговечности до 200 тыс. ч. Разработаны и испытаны образцы ЛБВ с КПД 60... 64% и долговечностью более 150 тыс. ч

Первые разработки спиральных ЛБВ с шириной полосы более октавы позволили определить, что главным препятствием по расширению полосы рабочих частот является взаимодействие на частотах, кратных частоте основного сигнала (высших гармонических составляющих (ВГС)). В результате многочисленных исследований было установлено, что все многообразие средств подавления ВГС, причем с достаточно эффективной передачей их энергии основному сигналу, реализуется. с помощью единственного метода - метода компенсации . Он заключается в том, что на входе или в пространстве взаимодействия самой ЛБВ формируется сигнал, насыщенный гармониками. противофазными гармоникам, образующимся в результате нелинейного взаимодействия по основному сигналу [5].

Наиболее просто он реализуется в усилительных цепочках на ЛБВ, в которых между каскадами устанавливается так называемый фазовый компенсатор (отрезок длинной линии с максимально крутой дисперсией), который изменяет фазовый сдвиг между основным сигналом и его гармониками на необходимую величину (как правило, от 90 до 180°). Для повышения устойчивости цепочки между каскадами фазовый компенсатор может быть совмещен с ЛБВ-вентилем. основанным на взаимодействии отраженного СВЧ-сигнала с быстрой волной пространственного заряда. Именно такое построение усилителя позволило впервые достичь уровня мощности порядка 1 кВт в диапазоне 1.8 ГГц с мгновенной полосой частот до 1,5...2 октав.

Для осуществления метода компенсации в одной ЛБВ необходимо обеспечить определенные условия взаимодействия широкополосной ЛБВ.Выбор параметров выходного участка пространства взаимодействия является главной задачей при проектировании широкополосной ЛБВ, поскольку именно он определяет выходную мощность и КПД, уровень нелинейных искажений и ВГС. Наконец, от выбранной модели подавления гармоник и передачи их энергии полю основного сигнала определяются требования и к другим участкам прибора. Характерны два варианта энергообмена между ВГС и основным сигналом:

первый - при равенстве фазовых скоростей возмущенных волн поля на частотах первой и, как правило, второй гармоник, что соответствует слабой нормальной дисперсии ;

второй - когда эти скорости существенно различаются (большая нормальная дисперсия и нулевая или аномальная дисперсия). В первом случае для реализации процесса компенсации необходимо создать специальный компенсирующий сигнал; во втором по мере изменения по длине фазовых соотношений (из-за упомянутой выше разности скоростей) гармоники автоматически попадают в фазу оптимального энергообмена с основным сигналом.

Вместе с тем высокий уровень гармоник в слабонелинейном режиме, повышенная неравномерность амплитудно-частотной характеристики, обусловленная скачком фазы поля, показывают, что этот метод сложен для реализации в сверхширокополосных ЛБВ .

Оптимизация пространства взаимодействия велась в октавном диапазоне: в результате технический КПД при одноступенчатой рекуперации превысил 30%, а уровень ВГС в режиме насыщения уменьшился до 10 Дб.

Коэффициент усиления и собственные шумы широкополосных ЛБВ

Одним из главных ограничений коэффициента усиления в широкополосных ЛБВ является требование минимизации уровня собственных шумов в рабочей полосе частот. Эти два параметра связаны известным соотношением

 (1)

где Рш - интегральный шум в рабочей полосе ();

k =1,38-10-23постоянная Больцмана;

То =293 К -шумовая температура;

Кш коэффициент шума;

Ку-максимальный в полосе частот коэффициент усиления прибора в линейном режиме работы;

Кф- коэффициент формы АЧХ, лежащий обычно в пределах 0,3... 0,5.

Из анализа (I) видно, что возможны два направления работ по уменьшению уровня шумов при заданных значениях коэффициента усиления и полосы усиливаемых частот: уменьшение коэффициента шума и минимизация перепада коэффициента усиления в диапазоне частот (определяемая значениями Кумах и Кф)

Зависимость коэффициента шума ЛБВ средней и большой (более 20 Вт) мощностей от выходной мощности Рвых [Вт] может быть выражена в следующем виде:

 (2)

где Рид - выходная мощность прибора по ТУ, Вт.

Связь между Кш и минимально возможным коэффициентом шума Кшmin быть представлена в виде :

 (3)

где S и В- диаметры катода и электронного пучка

Вытекающая из (3) очевидная рекомендация по уменьшению диаметра катода связана с увеличением удельного токоотбора н, как следствие, со снижением долговечность прибора и поэтому далеко не всегда применима. На практике при конструировании и изготовлении электронно-оптической системы необходимо предпринять все меры к тому. чтобы снизить разброс скоростей электронов, исключить возможность эмиссии с боковых поверхностей катода и других электродов пушки. Как правило, при настройке прибора в МПФС приходится предпринимать специальную юстировку по уровню шума, Однако все эти меры не позволяют кардинально изменить коэффициент шума и достигнуть нижнего предела допуска [6].

Более широкие возможности по уменьшению собственных шумов ЛБВ заложены в оптимизации АЧХ прибора Каждый участок пространства взаимодействия, работающий в линейной и слабонелинейной областях взаимодействия, конструируется таким образом, чтобы обеспечить минимальный период коэффициента усиления в заданном диапазоне частот. Освоение управлением дисперсией позволяет использовать для этой цели разнообразные комбинации скачков фазовой скорости и дисперсии, реализуемые с помощью изменения шага и диаметра спирали, формы керамических и металлокерамических опор, диаметра и формы экрана.

В более коротковолновых ЛБВ из-за отсутствия к началу их разработки приемлемого конструкторско-технологического решения по управлению дисперсией такие средства не применялись. В результате интегральная мощность шума таких приборов на 1 - 2 и более порядков выше, чем в длинноволновых ЛБВ при тех же значение коэффициента усиления. (таблица1.3)

Таблица 1.3- Параметры ЛБВ

Тип

ЛБВ

УВ-

А3001

УВ-

А3002

УВ-

А3003

УВ-

А3004

УВ-

А3009

УВ-

А349А

УВ 3018
F,ГГц 1...2 1...2 2..4 2...4 8...18 8…18 7,5…18
 Рвых.Вт 400 1000 400 1000 50 100 250
Ку,Дб 40 30 40 30 50 40 33
Pш, мВт 10 1 10 1 2000 1000 180

Комплексированные устройства

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

рефераты
Новости