рефераты рефераты
Главная страница > Дипломная работа: Разработка устройства автоматического регулирования света на микроконтроллере  
Дипломная работа: Разработка устройства автоматического регулирования света на микроконтроллере
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Разработка устройства автоматического регулирования света на микроконтроллере

Возможны два варианта короткого замыкания: при выключенной нагрузке и при включенной нагрузке.

В первом случае ток возрастает медленно, т.к. нагрузка всегда включается при нулевом напряжении в сети, и яркость лампы всегда увеличивается плавно. Поскольку в устройстве применён быстродействующий предохранитель, он успевает перегореть, защищая другие элементы схемы.

Во втором случае ток мгновенно возрастает настолько, что предохранитель не успевает защитить чувствительный к перегрузкам транзистор. В результате транзистор выходит из строя первым. Теоретически это говорит о том, что транзистор может не выдержать перегрузку, которая возникает, если лампа перегорит во время работы, т.к. ток при этом достигает несколько десятков ампер.

Короткое замыкание в цепи питания +5 В устройству не страшны, т.к. в этом случае роль ограничителя тока играет балластный резистор.

При повышенной мощности нагрузки устройство ведёт себя так же как в случае короткого замыкания при выключенной нагрузке.

Установлено, что при выходе из строя транзистора все его выводы оказываются замкнутыми между собой. Поскольку в этом случае на затворе будет потенциал земли, предпринимать дополнительные меры по защите выходов МК не требуется.

Защита от превышения сетевого напряжения

Для защиты от высоковольтных помех, возникающих в электрической сети, например при грозовых разрядах, применяется двусторонний полупроводниковый ограничитель напряжения – защитный диод. По сравнению с варисторами защитные диоды обладают более высоким быстродействием, что позволяет использовать их для предохранения высокочувствительных полупроводниковых приборов, к которым, в частности, относятся и микроконтроллеры. Кроме того, в отличие от варисторов их характеристики не ухудшаются со временем.

Защитный диод устанавливается параллельно входу устройства непосредственно за предохранителем. Выводы защитного диода служат теплоотводом. Согласно описанию, длина каждого вывода должна составлять 10 мм.

Если в течение некоторого времени ток через защитный диод будет превышать ток срабатывания предохранителя, последний перегорает, защищая устройство. Чем больше превышение тока, тем быстрее сработает предохранитель. Как уже отмечалось, применённый в схеме быстродействующий предохранитель имеет время срабатывания 1 сек. при превышении номинального тока в 2,75 раза.

Если мощность высоковольтного импульса будет больше мощности защитного диода (например, при аварийном повышении сетевого напряжения до 380 В), защитный диод может выйти из строя. При этом выводы защитного диода окажутся замкнутыми накоротко, что приведёт к перегоранию предохранителя. Остальные элементы схемы останутся неповреждёнными. В данном случае для восстановления работоспособности устройства потребуется заменить и предохранитель, и защитный диод.

При воздействии высоковольтного импульса напряжение на входе диодного моста не превысит максимальное напряжение ограничения защитного диода.

Напряжение ограничения защитного диода зависит от длительности импульса, и для указанного на схеме типа составляет 548 В для 1000 мкс и 706 В для 20 мкс. В большинстве случаев, описанных в, при выборе защитного диода следует руководствоваться напряжением, которое соответствует длительности импульса 1000 мкс. Поэтому будем считать, что напряжение на входе диодного моста, ни при каких обстоятельствах не превысит порог 548 В.

Теперь проанализируем, выдержат ли компоненты устройства напряжение ограничения 548 В. Лампы и предохранитель не учитываются, т.к. их выход из строя не является фатальной неисправностью и легко устраняется заменой. Также можно не учитывать балластный резистор и резистор верхнего плеча делителя напряжения, поскольку высоковольтные и углеродистые (film) резисторы хорошо переносят кратковременные (до 5 секунд) перегрузки, превышающие номинальное напряжение в 1,5 и 2,5 раза соответственно [5]. Долговременной перегрузки в данном случае не будет, т.к. сработает предохранитель.

Диодный мост и транзисторы рассчитаны на 600 В. Как было показано ранее при расчёте балластного резистора, при напряжении 548 В ток через ИОН не превысит 7 мА, что на 5 мА меньше его максимального рабочего тока 12 мА. Ток внутренних диодов МК при сопротивлении верхнего плеча делителя напряжения 620 кОм не превысит I = 548 / 620000 = 0,88 мА, что укладывается в допустимый предел 1 мА.

Таким образом, повышение сетевого напряжения до уровня ограничения защитного диода не приведёт к выходу из строя элементов схемы.

н) Расчёт потребляемой мощности

Как следует из анализа принципиальной схемы, потребляемый ток складывается из следующих составляющих: ток делителя напряжения Iд, ток стабилитрона Iст, и ток нагрузки блока питания Iн. В силу малых величин, обратные токи защитного диода, выпрямительного моста, транзисторов, а также токи утечки конденсаторов не учитываются. Итак,

P = Uвх • (Iд + Iст + Iн).                                                                (2.10)

Ток делителя напряжения определим по закону Ома с учётом падения напряжения на диодах выпрямительного моста:

P = Uвх• (((Uвх – Uд) / Rд) + Iст +Iн).                                          (2.11)

Для расчёта тока стабилитрона и тока нагрузки преобразуем формулу (2.4), использованную при расчёте балластного резистора, к виду:

Iст + Iн = (Uвх – 2•Uд – Uст) / Rб.                                                         (2.12)

С учётом коэффициента, учитывающего отклонение сопротивлений резисторов, конечная формула будет иметь вид:

P = Uвх • [((Uвх – 2•Uд) / Rд•Кr) + ((Uвх – 2•Uд – Uст) / Rб•Кr)] (2.13)

Рассчитаем максимальную мощность, потребляемую устройством в ждущем режиме, при номинальном напряжении сети Uвх = 220 В и минимальном напряжении стабилизации Uст = 4,95 В.

Падение напряжения на диоде выпрямительного моста Uд = 0,65 В.

Общее сопротивление делителя напряжения определяется суммой последовательно включенных сопротивлений:

Rд = 620000 + 9100 = 629100 (Ом).


По аналогии:

Rб = 30000 + 30000 = 60000 (Ом).

Отклонение номиналов резисторов 5%, т.е Кr = 0,95.

Подставляем данные в формулу (2.13):

P = 220 • [((220 – 2•0,65) / 629100•0,95) +

+((220 – 2•0,65 – 4,95) / 60000•0,95)] =

= 220 • [0,00037 + 0,0038] = 0,92 (ВА).

Потребляемый устройством ток от сети в ждущем режиме при номинальном сетевом напряжении, составляет 4,0 мА.

Отсюда P = 220 • 0,004 = 0,88 ВА, что находится в пределах рассчитанной величины.

Поскольку в ждущем режиме устройство представляет собой чисто активную нагрузку, активная мощность в данном случае эквивалентна полной мощности: Р = 0,92 ВА = 0,92 Вт.

Интересно отметить, что при увеличении яркости канала с минимума до максимума коэффициент мощности (power factor) увеличивается с 0,22 до 0,98.

Рассчитанная потребляемая мощность соответствует европейской директиве 1275/2008/ЕС от 17 декабря 2008 года, согласно которой уровень энергопотребления устройств, выпускаемых с 07 января 2010 года, не должен превышать 1 Вт в ждущем режиме.

2.7 Разработка схемы электрической принципиальной

После выбора компонентов и расчета элементной базы приступаем к разработке схемы электрической принципиальной в Accel EDA (Рис. 2.7).

Рисунок 2.7 - Принципиальная схема устройства автоматического регулирования света в Accel EDA

Схема электрическая принципиальная устройства автоматического регулирования света на микроконтроллере приведена в Приложении Ж.


3 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ОБЪЕКТА РАЗРАБОТКИ

В данном разделе проводится технико-экономический расчет стоимости устройства автоматического регулирования света.

Стоимость устройства будет состоять из стоимости разработки ПО для микроконтроллера и стоимости разработки конструкторской документации и сборки устройства.

3.1 Расчет расходов ПО для микроконтроллера, которое разрабатывается

Исходные данные для расчета стоимости разработки ПО, которое разрабатывается приведенны в таблице 3.1.

Таблица 3.1 – Данные на 1.01.2010 г.

№п/п Статьи затрат  Усл. обозн. Ед. изм. Значения

 

 

Проектирование и разработка ПЗ

 

1 Часовая тарифная ставка программиста Зпр грн. 8,00

 

2 Коэффициент сложности программы с коэф. 1,40

 

3 Коэффициент коррекции программы Р коэф. 0,05

 

4 Коэффициент увеличения расходов труда Z коэф. 1,3

 

5 Коэффициент квалификации программиста k коэф. 1,0

 

6 Амортизационные отчисления Амт % 10,0

 

7 Мощность компьютера, принтера Квт/ч 0,40

 

8

Стоимость ПЕОМ IBM

Sempron LE1150(AM2)/1GB/TFT

Втз грн. 3200,00
9 Тариф на электроэнергию Це/е грн. 0,56
10 Норма дополнительной зарплаты Нд % 15,0
11 Отчисление на социальные расходы Нсоц % 37,2
12 Транспортно-заготовительные расходы Нтр % 4,0
Эксплуатация П0

 

13 Численность обслуживающего персонала Чо чел 1

 

14 Часовая тарифная ставка обслуживающего персонала Зперс грн. 6,00
15 Время обслуживания систем То час/г 150
16 Стоимость ПЕОМ Втз грн. 3200,00
17 Норма амортизационных отчислений на ПЕОМ На % 10,0
18 Норма амортизационных отчислений на ПЗ НаП % 10,0
19 Накладные расходы Рнак % 25,0
20 Отчисление на содержание и ремонт ПЕОМ и ПО Нр % 10,0
21 Стоимость работы одного часа ПЕОМ Вг грн. 6,5

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

рефераты
Новости