рефераты рефераты
Главная страница > Дипломная работа: Проект гелеоисточника для энергохозяйства  
Дипломная работа: Проект гелеоисточника для энергохозяйства
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Проект гелеоисточника для энергохозяйства

16. PWMFREQ_RxD – в автономном режиме эта ножка используется для задания частоты ШИМ.

17. RETRY_TxD – выход управления ключом промежуточного контура.

18. RBRAKE – выход управления ключом промежуточного контура, для сброса энергии.

19. FAULTOUT – данный вывод используется для индикации ошибки.

20. VBOOST_MODE – вывод задания режима работы МК. Высокий логический уровень – автономный режим работы, низкий – режим работы с ПК.

21. VDD – напряжение питания, +5V.

22. Vss – вывод земли.

23. FWD – вход задания направления вращения двигателя.

24. START – вход включения.




Подпись: Схема электрическая принципиальная системы управления гелеоисточника.




Микроконтроллер Motorola МС3РНАС.

Рисунок 2.2


25. MUX_IN – в автономном режиме является входом регулирования коэффициента заполнения.

26. SPEED – задание частоты вращения двигателя.

27. ACCEL – вход, влияющий на разгон двигателя.

28. DC_BUS – вход для отслеживания напряжения промежуточного контура.

Как видно из рис. 1 схема управления состоит из следующих блоков. Блок задания (БЗ) для задания выходных параметров сигнала. Через делители напряжения на соответствующие входы задания БУ задаются полярность, частота выходного сигнала, а также частота ШИМ. Согласно заданным параметрам на выходах ШИМ формируются сигналы, которые далее поступают на драйвер (Д). Драйвером является микросхема IR2135, типовая схема подключения изображена на рис. 2.4, структурная схема изображена на рис. 2.5., основные параметры приведены в таблице 2.2 [2].

Таблица 2.2. Основные параметры микросхемы IR2135

Название параметра. Значение и единица измерения
1. Напряжение питания 12 В
2. Максимальное коммутируемое напряжение 1200 В
3. Выходной ток 200 – 420 мА
4. Выходное напряжение 10 – 20 В
5. Время переключений (типовое) 700 нс
6. Рабочая температура

-55 – 1050 С

Описание выводов микросхемы IR2135:

HIN 1,2,3 – логические входа (вывода 22,23,24) ключей высокого уровня.

НО 1,2,3 – логические выхода (вывода 13,16,19) ключей высокого уровня.

LIN 1,2,3 – логические входа (вывода 25,26,27) ключей низкого уровня.

LO 1,2,3 – логические выхода (вывода 9,10,11) ключей низкого уровня.

FAULT – выход ошибки (вывод 28).

VСС – напряжение питания (вывод 21).

ITRIP – вход токовой защиты (вывод 1).

FLT-CLR – вход сброса ошибки (вывод 2).

SD – логический вход выключения.

САО – выход усилителя тока.

СА– – инверсный вход усилителя тока.

СА+ – неинверсный вход усилителя тока.

Микросхема имеет вход токовой защиты ITRIP рис. 2 (ВТЗ, рис. 1) и выход ошибки FAULT рис. 2.2 (ВыхО, рис. 2.1). При срабатывании токовой защиты (сигнал снимается с датчика тока ДТ, рис. 2.1) микросхема переводит все выхода в высокоимпедансное состояние и работа схемы приостанавливается, на выходе ошибки появляется логический сигнал высокого уровня. Сбрасывается ошибка путем подачи на вход FAULT-CLR (рис. 2.2) логического сигнала низкого уровня.

После драйвера сигнал поступает на силовые модули (СМ рис. 2.1), а затем на нагрузку (Н рис. 2.1). В блоке силовых ключей встроен датчик температуры (ДТР рис. 2.1), который останавливает работу схемы при превышении допустимой температуры, сигнал поступает на вход ошибки FAULT_IN (рис. 2.2) (ВО БУ (рис. 2.1)).

Датчики напряжения ДН (рис. 2.1) и блок обработки выходного сигнала (БОВС рис. 2.1) вместе являются обратной связью. Сигнал обратной связи принимается на вход регулирования выходного напряжения, путем изменения напряжения на входе аналогово-цифрового преобразователя (АЦП) (рис. 2.1). Все блоки в схеме питаются от блока питания (БП рис. 2.1). Схема блока питания (рис. 2.6) была заимствована с разработки блока питания используемого в автоматизированном электроприводе фирмы «Relains». Для данной схемы ниже рассчитан трансформатор.


Схема управления работает следующим образом. Включается система управления кнопкой S1 (рис. 2.2). БЗ задает параметры выходных импульсов БУ.

На выходах ВШ БУ формируются импульсы управления силовыми ключами. Однако широтно-модулированные импульсы задается относительно общего проводника схемы. Для ключевого транзистора нижнего уровня этого вполне достаточно, сигнал можно непосредственно подавать на затвор (базу), так как исток (эмиттер) связан с общим проводом. Если транзистор нижнего уровня находится в закрытом состоянии, a верхнего уровня открыт, на истоке транзистора верхнего уровня присутствует напряжение питания Un. Поэтому для управления транзисторами верхнего уровня необходима гальванически развязанная с общим проводом схема, которая четко будет передавать импульсы схемы управления не внося в нее искажений. Микросхема IR2135 решает эту проблему, имея отдельно выхода управления ключевыми транзисторами нижнего и верхнего уровней, а также защищает силовые ключи от таких эффектов как скорость нарастания тока, скорость нарастания напряжения и сквозных токов [2].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19

рефераты
Новости