рефераты рефераты
Главная страница > Курсовая работа: Проектирование и расчет балочной клетки  
Курсовая работа: Проектирование и расчет балочной клетки
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Проектирование и расчет балочной клетки

где

Подобранное сечение балки проверяем на прочность. Определим момент инерции балки:

 см4.

Определим момент сопротивления балки:

см3.

Проверим нормальные напряжения в балке по следующей формуле:

,

кН/см2 < 23×1 = 23 кН/см2,

следовательно, подобранное сечение удовлетворяет условию прочности и не имеет недонапряжений больше 5%.

Проверку прогиба делать нет необходимости, так как принятая высота сечения главной балки больше минимальной и регламентированный прогиб будет обеспечен.

3.1 Изменение сечения главной балки по длине

В разделе (3) я считал, что сечение главной балки остается постоянным по всей длине. Теперь рассчитаю балку с измененным сечением, путем изменения ширины поясов по длине.

Сечение составной балки, подобранное по максимальному изгибающему моменту, можно уменьшить в местах снижения моментов (у опор). Однако каждое изменение сечения, дающее экономию металла, несколько увеличивает трудоемкость изготовления балки, и поэтому оно экономически целесообразно для балок пролетом более 12 м, что справедливо для нашего случая (16 м).

При равномерной нагрузке наивыгоднейшее по расходу стали место изменения сечения поясов однопролетной сварной балки находится на расстоянии примерно l/6 пролета балки от опоры: м.

Определим момент и поперечную силу в месте изменения сечения 1-1:

кН×м = 297345 кН×см;

кН.

Производимый подбор измененного сечения ведем по упругой стадии работы материала. Определим требуемый момент сопротивления и момент инерции измененного сечения исходя из прочности сварного стыкового шва, работающего на растяжение:

см3;

где Rwy = 0,85·R = 0,85·23 = 19,55

см4.

Определим требуемый момент поясов, учитывая то, что момент инерции стенки остался тем же:

 см4.

Требуемая площадь сечения поясов балки:

см2.

Находим требуемое значение ширины пояса:

см.

Окончательно примем bfx = 360 мм.

Принимаем пояса из универсальной стали 360х24 мм

Принятый пояс удовлетворяет условиям:

.

Проверим на прочность подобранное сечение балки. Определим момент инерции балки:

см4.

Определим момент сопротивления балки:

см3.

Тогда

кН/см2 < 23×1 = 23 кН/см2,

Следовательно выбранная балка проходит по нормальному напряжению в месте изменения сечения.


3.2. Проверка прочности и общей устойчивости главной балки

3.2.1 Проведем проверку прочности балки

Проверка максимального нормального напряжения в середине балки и в месте изменения сечения была выполнена выше.

Проверим максимальное касательное напряжение в стенке на нейтральной оси сечения около опоры балки:

где S-статический момент полусечения балки

см3.

кН/см2 < 13,3×1 = RS×gc.

Проверим местные напряжения в стенке под балками настила:

,

где F – расчетные значения опорных реакций балок настила:

,

где q =72,63 кН/м – расчетная нагрузка на балку настила c учетом собственного веса балки;

а = 0,9 – шаг балок настила,

lloc – длина передачи нагрузки на стенку главной балки:

см.

кН/см2 < Ry×gc = 23 кН/см2.

Наличие местных напряжений, действующих на стенку балки, требует проверки совместного действия нормальных, касательных и местных напряжений на уровне поясного шва и под балкой настила по уменьшенному сечению вблизи места изменения сечения пояса. В рассматриваемом примере такого места нет, так как под ближайшей балкой настила будет стоять ребро жесткости, которое воспринимает давление балок настила, и передачи локального давления на стенку в этом месте не будет. Поэтому проверяем приведенные напряжения в месте изменения сечения 1-1 балки (где они будут максимальны) по формуле:

,

где

 кН/см2,

 кН/см2

где

см3,

тогда, получим

 кН/см2кН/см2.

Из этих проверок следует, что прочность балки обеспечена.

3.2.2 Проверяем общую устойчивость балки

Проверим общую устойчивость в месте действия максимальных нормальных напряжений, принимая за расчетный пролет lef = 90 см - расстояние между балками настила. Условие устойчивости записывается в виде:

,

где lef – расчетная длина балки между связями, препятствующими поперечным смещениям сжатого пояса балки;

bf – ширина сжатого пояса (ширина полки);

tf – толщина сжатого пояса (толщина полки);

hef – расстояние (высота) между осями поясных листов.

Условия применения уравнения устойчивости плоской формы изгиба:

применение формулы возможно.

При t=0 и с1х=сх получаем

.

Проверим общую устойчивость в месте уменьшенного сечения главной балки (балка работает упруго и):

.

Обе проверки показали, что общая устойчивость балки обеспечина.

3.2.3 Проверка прогиба

Проверку главной балки по второму предельному состоянию (проверку прогиба) производить нет надобности, так как принятая высота балки h=140 см > см.


3.3 Проверка местной устойчивости сжатого пояса и стенки сварной балки

3.3.1 Проверка устойчивости сжатого пояса

Эту проверка производится в месте возникновения максимальных нормальных напряжений – в середине пролета главной балки.

где bef – расстояние от грани стенки до края поясного листа – полки:

- свес пояса

Поскольку  < , то можно считать, что местная устойчивость сжатой полки балки обеспечена.

3.3.2 Проверка устойчивости стенки

Определим необходимость укрепления стенки поперечными ребрами жесткости по п. 7.10 СНиПа II-23-81*. Так по СНиПу II-23-81* стенки балок следует укреплять поперечными ребрами жесткости, если значение условной гибкости стенки балки`lw превышает 2,2.

поперечные ребра жесткости необходимы. Кроме того, в зоне учета пластических деформаций необходима постановка ребер жесткости под каждой балкой настила, так как местные напряжения в стенке в этой зоне недопустимы.

Определим длину зоны использования пластических деформаций в стенке:

см,

т.е. по 1937 мм с каждой стороны от оси симметрии.

Расстановку вертикальных ребер жесткости принимаем согласно рисунку на стр. 30, через промежуток а = 270 см. Это расстояние удовлетворяет условию СНиПа II-23-81* (п. 7.10), которое между основными поперечными ребрами не должно превышать 2·hw, т.к.

см.

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости