рефераты рефераты
Главная страница > Курсовая работа: Проектирование строительства механосборочного цеха  
Курсовая работа: Проектирование строительства механосборочного цеха
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Проектирование строительства механосборочного цеха

Выбор материала колонн фахверка

Материал каркаса Высота колонны Материал фахверков Сечение фахверка, мм
Ж.Б. каркас от 3 до 6 м Ж.Б. 300х300
от 7,2 до 9,6 м Ж.Б. со стальной насадкой

300х400;

400х600

от 10,8 до 18 м Металлический

Двутавр,

до 50 мм высотой

Смешанный каркас 6 м и выше Металлический двутавр, сечение подбирается по расчету
Металлический каркас до 18 м

3.3  Стропильные и подстропильные фермы

Стропильные фермы обладают хорошими технико – экономическими показателями, в курсовом приняты следующие фермы:

- железобетонные – пролет L = 18 м;

- металлические – пролет L = 30 и 36 м.

Железобетонные сегментные безраскосные фермы имеют криволинейный верхний пояс. Незначительная высота на опоре этих ферм позволяет уменьшить общую высоту здания. Эти фермы технологичны в изготовлении и позволяют рационально использовать межферменное пространство.

Металлические раскосные фермы – параллельными поясами с уклоном верхнего пояса 1,5%. Пояса и решетку ферм выполняют из уголков и соединяют между собой сваркой с помощью фасонок из листовой стали.

С колоннами фермы соединяют шарнирно с помощью надопорных стоек двутаврового сечения. Стойки крепят к колоннам анкерными болтами, а пояса ферм к стойкам – болтами.

Подстропильные фермы, используемые в курсовом проекте, имеют пролет 12 м и предназначены для опирания на них стропильных ферм, шаг которых 6 м.

3.4  Подкрановые конструкции

Железобетонные подкрановые балки (цех № 1, 2, 3) служат опорами для рельсов, по которым передвигаются мостовые краны. Кроме того, они обеспечивают продольную пространственную жесткость каркаса здания. Применены подкрановые балки неразрезные в пределах температурного блока. Высота балок таврового сечения на крайних колоннах – 1000 мм, на средних колоннах – 1400 мм.

При изготовлении железобетонных подкрановых балок в их тело закладывают газовые трубки, необходимые для пропуска болтов крепления кранового пути и подвесок для троллейных проводов.

В торцах здания на подкрановых балках устанавливаю упоры для мостовых кранов.

Металлические подкрановые балки (цех № 4 и 5) приняты неразрезными в пределах температурного блока. По сравнению с разрезными балками, эти балки имеют меньший расход стали и лучшие условия эксплуатации подкрановых путей. Высота балок двутаврового составного сечения на крайних колоннах – 1000 мм.

Нижний пояс подкрановых балок крепят к колонне анкерными болтами, а верхний – тормозными фермами или накладками.

При высоте подкрановых балок более 1200 мм дополнительно вводят диафрагмы.

3.5  Связи по колоннам

Для повышения пространственной устойчивости зданий в продольном направлении и восприятия ветровых нагрузок предусматривают систему вертикальных связей между колоннами. Они устанавливаются в середине температурного блока в каждом ряду колонн.

При шаге колонн 6 м применяют крестовые связи, а при шаге 12 м – портальные. При портальных связях легче организовать пропуск напольного транспорта.

Конструкция связей зависит от высоты здания, наличия мостовых кранов и их грузоподъемности.

Связи выполняют из уголков или швеллеров и крепят к колоннам с помощью косынок на сварке.


3.6  Наружные стены

В курсовом проекте используются железобетонные навесные стены, которые воспринимают нагрузку от собственной массы и ветровые нагрузки в пределах только одного этажа при многоэтажных зданиях или пределах одного шага (одной панели) в одноэтажных зданиях. Эти стены выполняют функции ограждающих конструкций, т.к. свою массу они передают на каркас через опорные стальные столики или через обвязочные балки.

Для предохранения стен от проникновения грунтовой влаги в их нижней части устраивают гидроизоляцию .

В курсовом проекте принимаем высоту стеновых панелей 1200 и 1800 мм, дину – 6000 мм. Панели в стенах располагаются горизонтально.

В отапливаемых зданиях при шаге колонн 6 м используют легкобетонные однослойные плоские панели. Их изготавливают из ячеистых бетонов плотностью 400 – 800 кг/м3 и легких бетонов с плотностью 900 – 1200 кг/м3. С обеих сторон на поверхность панелей наносят фактурные слои толщиной 20 мм из цементно – песчаного раствора. Армируют такие панели пространственными каркасами.

Углы зданий с панельными стенами монтируют из специальных доборных блоков, прикрепляемых к основным панелям сваркой закладных элементов.

Дождевые и талые воды отводят от стен путем устройства отмостки.

Теплотехнический расчет ограждающей конструкции

Исходные данные

Место строительства

г.Самара

Назначение здания

промышленное

Внутренняя температура воздуха, tв

+16°С

Расчетная зимняя температура наружного воздуха равная температуре наиболее холодной пятидневки, с обеспеченностью 0,92, tн

- 30°С

Продолжительность отопительного периода со средней суточной температурой воздуха £ 8 °С, Zот.пер.,

206 сут.

Средняя температура tот.пер.,

 - 6,1°С

Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции (табл. 4), αв

8,7

Коэффициент теплоотдачи наружной поверхности ограждающей конструкции (табл. 6), αн

23

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

рефераты
Новости