рефераты рефераты
Главная страница > Доказательство Великой теоремы Ферма методами элементарной алгебры  
Доказательство Великой теоремы Ферма методами элементарной алгебры
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Доказательство Великой теоремы Ферма методами элементарной алгебры

Доказательство Великой теоремы Ферма методами элементарной алгебры

2

Доказательство теоремы Ферма методами элементарной алгебры

Бобров А.В.

г. Москва

Контактный телефон - 8 (495)193-42-34

bobrov-baltika@mail.ru

В теореме Ферма утверждается, что равенство для натуральных и может иметь место только для целых .

Рассмотрим равенство

, (1)

где и - натуральные взаимно простые числа, то есть числа, не имеющие общих целых множителей, кроме 1. В этом случае два числа всегда нечетные. Пусть - нечетное число, и - натуральные числа. Для всякого действительного положительного числа выполнима операция нахождения арифметического значения корня, то есть равенство (1) можно записать в виде:

, (2)

где и - действительные положительные множители числа В соответствии со свойствами показательной функции, для любого

из действительных положительных чисел и существуют единственные значения чисел , удовлетворяющие равенствам

, (3)

Из равенств (2) и (3) следует:

, . (4)

Поскольку p>q, всегда имеет место p-q=k, или аp= аk аq, то есть числа и содержат общий множитель , что противоречит условию их взаимной простоты. Это условие выполнимо только при , то есть при . Тогда равенства (4) принимают вид:

, (5)

откуда следует

, (6)

то есть для взаимно простых и числа и всегда являются двумя последовательными целыми числами. Еще Эвклидом доказано, что всякое нечетное число выражается, как разность квадратов двух последовательных целых чисел, то есть равенство (1) для натуральных взаимно простых и может быть выражено только в виде равенства

. (7)

Справедливость приведенного доказательства можно проиллюстрировать следующим примером.

Пусть в равенстве Ферма числа и - целые взаимно простые, - четное. Тогда числа , , их сумма и разность - также целые, показатель степени p>q .

Целые числа и

являются взаимно простыми, если не содержат общих целых множителей, кроме 1. Это условие выполнимо только тогда, когда общий целый множитель , то есть , .

Тогда разность , что для одновременно целых и может иметь местотолько при , то есть при или , что и позволило Пьеру де Ферма сделать почти 370 лет назад свою запись на полях арифметики Диофанта.

рефераты
Новости