рефераты рефераты
Главная страница > Асимптоты (определение, виды, правила нахождения)  
Асимптоты (определение, виды, правила нахождения)
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Асимптоты (определение, виды, правила нахождения)

Асимптоты (определение, виды, правила нахождения)

МОСКОВСКИЙ ИНСТИТУТ ЭКОНОМИКИ,

МЕНЕДЖМЕНТА И ПРАВА

РЕФЕРАТ

по дисциплине: Высшая математика

на тему: Асимптоты (определение, виды, правила нахождения)

Выполнила: студентка 1 курса

Экономического факультета

(вечернее отделение)

Козлова М.А.

Проверил: Рошаль А.С.

Москва 2002 год

2

Содержание

Введение 3

2. Нахождение асимптоты 4

2.1 Геометрический смысл асимптоты 5

2.2 Общий метод нахождения асимптоты 6

3. Виды 8

3.1 Горизонтальная асимптота 8

3.2 Вертикальная асимптота 9

3.3 Наклонная асимптота 10

Использованная литература 12

3

Введение

Асимптота, так называемая прямая или кривая линия, которая, будучи продолжена, приближается к другой кривой, но никогда не пересекает ее, так что расстояние между ними делается бесконечно малой величиной.

Понятие асимптоты играет важную роль в математическом анализе. Они проводятся при изучении свойств многих кривых (гиперболы, конхоиды, логарифмич. линии, циссоиды и др.).

4

2. Нахождение асимптоты

Пусть функция f (x) определена для всех x а (соответственно для всех

x а). Если существуют такие числа k и l, что f(x) kx l = 0 при х (соответственно при х ), то прямая

y = kx + l

называется асимптотой графика функции f (x) при x (соответственно при х ).

Существование асимптоты графика функции означает, что при х +

(или х ) функция ведёт себя «почти как линейная функция», то есть отличается от линейной функции на бесконечно малую.

x 3x 2

Найдём, например, асимптоту графика функции y = x 1

Разделив числитель на знаменатель по правилу деления многочленов,

2 2

получим y = x 4 + x + 1 Так как x + 1 = 0 при х , то прямая y = x-4

является асимптотой графика данной функции как при х + ,

так и при х .

5

2.1 Геометрический смысл асимптоты

Рассмотрим геометрический смысл асимптоты. Пусть М = (x, f (x)) - точка графика функции f, М - проекция этой точки на ось Ох, АВ - асимптота,

- угол между асимптотой и положительным направлением оси Ох, ,

MP - перпендикуляр, опущенный из точки М на асимптоту АВ, Q - точка пересечения прямой ММ с асимптотой АВ (рис.1).

(рис.1)

Тогда ММ = f (x), QM = kx + l, MQ = MM QM = f (x) - (kx +l),

MP = MQ cos . Таким образом, MP отличается от MQ лишь на не равный нулю множитель cos , поэтому условия MQ 0 и MP 0 при х (соответственно при х ) эквивалентны, то есть lim MQ = 0,

то и lim MP = 0, и наоборот. х

х

Отсюда следует, что асимптота может быть определена как прямая, расстояние до которой от графика функции, то есть отрезок МР, стремится к нулю, когда точка М = (x, f (x)) «стремится, оставаясь на графике, в бесконечность» (при х или, соответственно, х ).

6

2.2 Общий метод отыскания асимптоты

Укажем теперь общий метод отыскания асимптоты, то есть способ определения коэффициентов k и l в уравнении y = kx + l.

Будем рассматривать для определённости лишь случай х (при х рассуждения проводятся аналогично). Пусть график функции f имеет асимптоту y = kx + l при х . Тогда, по определению,

f (x) = kx + l + 0

Разделим обе части равенства f (x) = kx + l + 0 на х и перейдём к пределу при х . Тогда

lim = k.

х

Используя найденное значение k, получим из f (x) = kx + l + 0 для определения l формулу

l = lim (f (x) - kx).

х

Справедливо и обратное утверждение: если существуют такие числа k и l, что выполняется условие l = lim (f (x) - kx), то прямая y = kx + l является

х

асимптотой графика функции f (x). В самом деле, из l = lim (f (x) - kx) имеем

х

lim f (x) (kx + l) = 0,

х

то есть прямая y = kx + l действительно удовлетворяет определению асимптоты, иначе говоря, выполняется условие f (x) = kx + l + 0. Таким образом, формулы lim = k. и l = lim (f (x) - kx)

х х

сводят задачу отыскания асимптот y = kx + l к вычислению пределов определённого вида. Более того, мы показали, что если существует

представление функции f в виде f (x) = kx + l + 0, то k и l выражаются по формулам lim = k. и l = lim (f (x) - kx)

х х

Следовательно, если существует представление y = kx + l, то оно единственно.

Найдём по этому правилу асимптоту графика функции f (x) = ,

найденную нами выше другим способом:

7

то есть мы, как и следовало ожидать, получили тоже уравнение асимптоты

y = x - 4, как при х , так и при х - .

В виде y = kx + l может быть записано уравнение любой прямой, непараллельной оси Oy. Естественно распространить определение асимптоты и на прямые, параллельные оси Oy.

8

3. Виды

3.1 Горизонтальная асимптота

Пусть lim f (x) = b. Тогда говорят, что у функции f (x) имеется горизонтальная асимптота y = b. График функции чаще всего имеет такой вид (при x +) (рис.2)

(рис.2)

хотя в принципе, может иметь и такой вид (рис.3)

(рис.3)

9

3.2 Вертикальная асимптота

(рис.4)

Пусть при x a 0 lim f (x) = . Тогда говорят, что прямая x = a является

х

вертикальной асимптотой f (x). График функции f (x) при приближении x к а ведёт примерно так (рис.4), хотя, конечно, могут быть разные варианты, связанные с тем, куда уходит f (x) в + или .

Чаще всего вертикальная асимптота появляется тогда, когда f (x) имеет вид

.

Тогда вертикальные асимптоты находятся как корни уравнения

10

3.3 Наклонная асимптота

(рис.5)

Пусть уравнение асимптот есть y = ax + b. Значение функции при аргументе х есть d = ax + b - f (x). Неограниченное приближение к асимптоте означает, что величина d = ax + b - f (x) стремится к 0 при х

lim [f (x) - (ax + b)] = 0.

x

Если эта величина стремится к нулю, то тем более стремится к нулю величина

Но тогда мы имеем

и так как последний предел равен нулю, то

Зная а, можно найти и b из исходного соотношения

Тем самым параметры асимптоты полностью определяются.

Пример

то есть асимптота при x + имеет уравнение y=x.

11

Аналогично можно показать, что при x - асимптота имеет вид y = - x.

Сам график функции выглядит так (рис.6)

(рис.6)

12

Использованная литература

Р.Б. Райхмист «Графики функций», Москва, 1991г.

Л.Д. Кудрявцев «Курс математического анализа» т.1, Москва 1981

Лекции по математике

рефераты
Новости