рефераты рефераты
Главная страница > Реферат: Flora and Fauna of the USA  
Реферат: Flora and Fauna of the USA
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Flora and Fauna of the USA

Реферат: Flora and Fauna of the USA

Flora and Fauna of the USA.

To begin the conversation about animals and pland word of North America is better to start with explanation of climate conditions and gografical situation of the region, in order to clear understanding of such a wide diversity of spices.

USA encompasses about 21.5 million km², between latitudes 26° and 85° N, and longitudes 15° W and 173° E, and it stretches from the Florida Keys northward to Ellesmere Island, and from Greenland westward to Attu Island in the Aleutian Archipelago. Widest in the north, the continent narrows sharply at the Gulf of Mexico. South of the United States border with Mexico, it tapers gradually to the Isthmus of Panama. It is surrounded by three oceans---the Arctic, Pacific, and Atlantic, respectively to the north, west, and east---and by the Gulf of Mexico to the south. It is separated from northeast Asia by the Pacific Ocean, and by the epicontinental Bering Sea, the Chukchi Sea, and the connecting Bering Strait. The Greenland and Norwegian seas, as well as the North Atlantic Ocean, separate North America from Europe and link the Atlantic to the Arctic Ocean; the Denmark Strait divides Greenland from Iceland. The Strait of Florida divides North America from the West Indies (Cuba).

Climate, physiography, and geology play major roles in determining the distributions of present-day soil classes, vegetation types, floras, and faunas. Biogeographers agree that climate is the primary factor in the control of these distributions. Climate determines the erosional and soil-forming processes that occur, and the life forms that are able to survive at a given locale, all of which may be affected secondarily by the types of bedrock and surficial deposits encountered in the area. In turn, relief influences climatic patterns through elevation above sea level and its effects on wind patterns and rainfall.

Geoclimatic changes that occurred throughout Earth history have affected the distribution of biotas through time. Climate has changed under cosmic influences, such as the Milankovitch cycles. The climate has also been affected by the relative position of the drifting continents, because drift implies latitudinal shifts, changes in the distribution of landmasses relative to oceans and oceanic currents, and modifications in the position of mountain ranges relative to airflow patterns. For instance, the Tertiary opening of the Atlantic onto the Arctic Ocean, and the establishment of the circumantarctic current with the opening of the Drake Passage between South America and Antarctica, played a significant role in subsequent climatic cooling.

The deep oceanic conveyor belt (a bottom sea current that links all the oceans) was presumably modified by changes in continental distribution and may have affected climate. W.F. Ruddiman and J.E. Kutzbach (1991) proposed that the 3-km uplift of the high plateaus in Tibet and in western North America in the Pliocene-Pleistocene were instrumental in provoking the late Tertiary trend of climatic cooling. Finally, the pathways by which biotas have been able to spread between continents were also affected by the existence of bridges. Such dynamic factors influenced the evolution of life on the North American continent.

First we take a look about the plant word and we begine by examining the history of North America vegetation. A discussion of the history of the vegetation of North America most logically begins with the events of the late Upper Cretaceous epoch, 70--60 Ma (million years ago). By then, the angiosperms and other major present-day groups were clearly established as dominant in the world's terrestrial flora. The continents were closer together than they are at present, and indeed, Eurasia and North America were still conjoined across the northern Atlantic. The plate tectonic forces that have placed the continents in their present configurations, however, were already in motion.

Our knowledge of the botanical events of the past rests on an interpretation of the fossil record, which for vascular plants occurs in two forms. Macrofossils are structures such as leaves, stems, fruits, seeds, wood, and flowers, whereas plant microfossils representing terrestrial or freshwater aquatic macrophytic vegetation include pollen grains, spores, and phytoliths (crystals formed within living plants). Paleobotany (including specialized approaches such as dendrochronology and analysis of pack-rat middens) has come to imply the study of plant macrofossils, and paleopalynology designates studies concerned with plant microfossils.

Experience has shown that most elements comprising a fossil assemblage are broadly consistent in terms of habitat preference, or they can be sorted into subsets reflecting habitat diversity (viz., elevational gradients). This organization gives rise to the concept of paleocommunities from which it is possible to deduce past climates, paleophysiography, and biogeographic patterns. Such reconstructions are based on a direct comparison and presumed general equivalency of most members of a fossil flora with modern analogs (composition of the flora), on the observation that present-day plants with certain morphological attributes (e.g., leaf physiognomy) are found in certain habitats, and on the assumption that most fossil plants with similar morphological attributes occurred in comparable habitats. For example, modern plant assemblages containing many large-leaved, entire-margined species with drip-tips typically occur in humid tropical habitats; therefore, a fossil flora with many similar leaf types is taken to indicate a humid tropical paleoenvironment. The composition of a fossil flora, based on the combined inventories provided by macro- and microfossil remains, leaf physiognomy, and dendrochronology, are all valuable methods for studying vegetational history and reconstructing the environments that influenced the development of North American vegetation through time.

The modern history of systematic botany and floristics in North America began when the first Europeans landed on these shores and began to collect objects of curiosity. It is imperative to use the term "modern," for long before colonization of the New World by Europeans, the Native Americans, who had arrived millennia earlier, had developed their own systems of classification, means of identification, and associated nomenclature. Unlike that of their European counterparts, their knowledge was transferred by the spoken rather than the printed word and was mostly lost as their civilizations fell to the invaders. To a great degree, it was not until the twentieth century that Native Americans were recognized as knowledgeable about their plants. By then, European thought dominated botany, and the Native American's botanical understanding was passed on only in an occasional native name retained in a Latinized form.

It was not until Columbus's second voyage, in 1493, that New World plants and animals were taken across the Atlantic. For the European scientific community, the unfamiliar specimens were a source both of great intellectual curiosity and of philosophical concern. The curiosities were clearly different from their Old World counterparts, and in some instances they were entirely novel. The likes and near-likes could be associated, but the distinctly different were philosophically troublesome.

The Spanish of the early sixteenth century were the first to describe the flora of the New World. Gonzalo Fernández de Oviedo y Valdes (1478--1557) visited several of the Caribbean islands and portions of Central America, trying to fit the tropical vegetation he observed into a classification scheme that recognized only six species of trees with persistent green leaves. Oviedo had become acquainted with native New World plants of equal or even greater value than those introduced to the New World by the Spanish, and he urged their use. He was ignored.

Nicolas Bautista Monardes (1493--1578) never saw the New World. His interests were the new medicines and new remedies he felt certain existed. He classified plants according to their medicinal properties, and for the American ones he often retained the native names. He accepted treatments recommended by the Amerinds, but as a firm believer in the Doctrine of Signatures, he occasionally modified them.

The missionary Jose d'Acosta (1539--1600) spent 20 years in Peru, returning to Spain in 1588 to publish various works on the New World. He urged scholars to regard the majority of living things in the New World as unique and not to assign them established European names. He described numerous native economic and medicinal plants and commented on the diversity of potatoes, tomatoes, and chili peppers he had found in the market; he also mentioned cacao and coca.

During this period, intellectual thought often was dominated by religious dogma. Scholarly investigations in the natural sciences began primarily in northwestern Europe. The first naturalists often had to flee the upheavals of the Protestant Reformation and, as a result, many traveled widely and learned from others. In this way, a more unified system of classification and nomenclature began to develop.

Herbals, those great tomes illustrated with woodcuts, were the primary botanical publications of the age. At first they were little more than restatements of Dioscorides or other classical authors, but as the herbals were developed over the next two centuries, new species and remedies were incorporated, including the wonders of the New World. Of equal importance was the development of botanic gardens, first established in Pisa in 1543. These soon became centers of scientific importance because not only could plants of faraway places be seen, but their medicinal properties could be determined also.

The following discussion begins with the floras of the Maastrichtian stage of the Upper Cretaceous, 70--65 Ma, and progresses forward in time through the Tertiary to 2 Ma, the end of the Pliocene epoch, i.e., to the advent of the Pleistocene, the "Ice Ages." Within each section, the fossil floras are discussed in a sequence that begins with the southeastern corner of the continent and proceeds westward and around the continent in a clockwise fashion.

In describing paleoevents, degrees of latitude and longitude, unless otherwise noted, are given in terms of present-day locations of the poles and continents, even though the North American continent has moved slightly relative to the poles during the Tertiary and to the present.

The flora of North America includes a large number of conspicuous plants that are called "weeds." The concept of weed is not precisely defined, for it has both a sociological and a biological component. From the sociological perspective, a weed is simply a plant that is growing where someone wishes it were not, and therefore, a weed may be regarded casually as a "plant-out-of-place." By that definition, a rose growing in a wheat field would be a weed; a rose in a garden would not. Some plants, however, have the genetic endowment to inhabit and thrive in places of continual disturbance, most especially in areas that are repeatedly affected by the activities of humankind. These plants are biologically "weedy," and they are sometimes termed colonizing or invasive plants. These biological weeds are the focus of next paragraph.

Weeds have a measurable effect on the affairs of society, and therefore they have attracted much attention. Weeds occur in all growth forms and in many lifestyles. The majority of weeds are flowering plants, and a high proportion of them share some or all of the following characteristics: short life cycle, rapid growth rate, high level of energy allocated to reproduction, efficient dispersal mechanisms, high population growth rate, wide distribution, seeds with long life spans, and flexible use of environmental resources. He noted that a plant with but few of these attributes is less likely to be successful as a weed than is a plant with all or most of them; therefore, the variation ranges from casual, local weeds to aggressive, widespread weeds.

The most troublesome and aggressive weeds are those foreign or alien species that have invaded the North American continent from regions elsewhere in the world. By comparison, fewer and less aggressive weeds are native species. Analysis of the geographical components of a large number of weeds usually shows over 60% to be foreign species. The distinction between foreign species and native species is not always clear, and it is not easy to measure the impact of those foreign or alien plants on the native vegetation. Several factors contribute to this lack of precision.

Botanists assume that species have a "place of origin," where at some time the species are differentiated from the ancestral entities. As time passes, a newly formed species migrates into new areas and/or expands its range, through the routine mechanisms of seed dispersal, seedling establishment, and other factors. Undoubtedly, some botanical traffic has occurred between North America and other continents since antiquity, but clearly colonization following Columbus's voyages to America initiated a significant number of invasions. Some of the historical aspects of plant migration at the hands of humankind are reviewed by V.Muhlenbach (1979).

Foreign or alien species are usually regarded as those that have been brought to North America by human activities in post-Columbian times, while native species either originated in North America or had arrived by various means in pre-Columbian times. Although botanists frequently use the term "introduced" for these foreign or alien species, in this chapter the term has a more restricted meaning and refers to those species deliberately brought by people into a new region, where the plants grow without cultivation. How many species have been transported from their putative places of nativity to North America in post-Columbian times is, of course, unknown. The historical documentation for these plant movements is often not well known or not yet researched, and many times what is known is based on circumstance and inference.

Here are en examples of native American plants. A large Sycamore tree, Platanus racemosa, played an early role in the establishment of Los Angeles. The central Gabrielino village of Yangna was located near a 60 ft. high, 200 ft. wide sycamore which was used for meetings amongst the Gabrielino leaders and was known as the "council tree". The Spanish settlement that later became the pueblo of Los Angeles was located next to Yangna, in sight of this stately tree. The settlement was washed away in the Great Flood of 1815, but the sycamore survived. It later died in 1892 and was cut down. A ring count revealed that the tree was 400 years old. It had started its life about the time Columbus first landed in America. Cottonwoods were very common trees along rivers and arroyos in California and the southwest. As cities and farmers have lowered water tables, these riparian trees have disappeared from many banks along arroyos in California, Nevada, and Arizona. The Fremont Cottonwood, Populus fremonti, was discovered in 1844 near Pyramid Lake by Major John Charles Fremont and Kit Carson. They used its riparian nature to help locate water. Willows are also a common riparian tree in the southwest. Some are actually assisted by floods. The rushing water bends some branches down into a sand bar where they sprout new roots and plants. The Willow, Salix, leaves were used by Native Californians for medicine. The small branches were used for baskets, and the large branches for wood. Cattail, Typha domingensis. California Indians used the roots and pollen for food, the roots for medicine, and the stalks for bedding and house construction material The Coastal Live Oak, Quercus agrifolia. An organization was created to promote its protection and replanting. Spiny Clotbur, Xanthium spinosum , uses its spines to transport the seeds long distance with the help of animals who brush against it. Gourds found in the Sepulveda Basin. During major winter storms these plants may be under the floodwaters that are held back by the dam.

Common Sunflower, Helianthus annuus.Native Californians used the seeds for food and the roots for medicine.
Duckweed, and two Bluets, if you can see them. Bluets are common along the river. Reeds and grasses were used by native americans for baskets, cordage, and food from the seeds. Jimson Weed was used by Native Americans as a ritual drug. It can be poisonous to humans and animals.

Our next pages we will devote to the world of animals of USA. Which animals are really special for the North America? One of the is coyot. The ghosts of the woods. The ever present monolog. The infamous cries of the coyote sparks tremors of terror in rural dwellers. Few Westerners regard the Canis Latrans as anything more than a savage nuisances. But even its enemies concede its durability. It thrives in the face of all attempts to trap, poison, or blast it into oblivion. The settling of the Great Plains is expanding its range eastward to the Atlantic, partly because of extirpation of the wolf. New Englanders call it the "coy dog" or brush wolf. But it's still the same mythical coyote of lore and legend. The mane "coyote" comes from the Aztec word "coyotl." Its Latin name means "barking dog." Adults, 2 feet high at the shoulders, are 3.6 to 4.5 feet long and weigh 20 to 50 pounds. The tough and wiry appearance of the coyote is misleading to its keen senses and quick wit. The coyote adapts readily to almost any habitat. And it is fast--up to 30 miles an hour in a dead run. Coyotes hunt alone or team with others to scrounge a meal. They will eat anything--from rabbits, rodents, and carrion (most of their diet), to watermelons and insects. Coyotes mate for life, and the female bears five or six pups each spring, and both parents share in their upbringing.

The other is jaguarundi.Hued like the desert dusk, the long low-slung jaguarundi can stalk unseen in the half-light. Twilight and dusk are its most successful hunting times. This small-headed southern felid, in body composition, resemble the weasels about as much as it does fellow cats. Tail down, it moves sinuously through the brush with scarcely a ripple of leaf or twig to betray its presence. One pounce, and a bird in the brush is a bird consumed. Though an agile climber, this species spends less time in the trees then the ocelot. Preferring to hunt on the ground, it needs no leaf or limb pattern on its black or russet coat. Dark plain fur serves as more than adequate camouflage when hunting fish and small mammals. The jaguarundi is one of the least known cats on the continent, its life history and population not yet well documented, and now may be too late. Already a rare animal, it becomes even more rare as its habitat--wild thickets and lowland forests--is sheared for ranching and farm use. Mating time for this cat seems to vary with location. The litter of two to three kittens is born after a gestation period determined from captive animals to be 72 to 75 days. Like most other cats, kittens in the wild are probably cared for solely by their mother. Full grown, the jaguarundi stands up to 14 inches at the shoulders. Its tail accounts for nearly half its length of 35 to 55 inches. A large individual may weigh as much as 20 pounds.

The same cat spice as a jaguarundi is ocelot. Marbled to blend into their sun and shadow world, Ocelots wear beautifully marked coats of brown, black and cream. Unfortunately, the marked coats make them a marked cat. They, like many other spotted cats of the south, were heavily hunted. The United States has protected this cat by passing the Endangered Species Act and making importation of their fur illegal. Some Latin American countries also officially protect these rare cats. Living in forests and brush land, Ocelots usually sleep during the day, hidden in foliage, and at night hunt medium-sized prey: rabbits, birds, monkeys, pacas, agoutis, iguanas, fish and frogs. A male and female sometimes hunt together. An excellent climber, the Ocelot will often take to the trees when pursued. Ernest Seton, however, wrote "He can run like a fox, blind hop, back-track, and double-cross his trail." Mexicans who hunted Ocelots not only took the pelts, but also consumed the meat and blood. In legend, eating Ocelot flesh brought great strength and health. This legend may have derived from the fact that if you were lucky enough to capture and eat an Ocelot, you were already in extraordinary health.

In cooler parts of their range Ocelots tend to bare their young in spring; in tropical areas births occur randomly. A cave or hollow tree is the ideal den. Information on this elusive species is limited. An average litter is probably two or three. An Ocelot is 36 to 54 inches long, including a tail of 11 to 16 inches to form 1/3 of its total length.

From the Ursidae family everybody know grizzly. "Grizzly" means "grayish" and also "inspiring horror." Both meanings apply. The grizzly's thick, coarse fur varies in color - off-white, tan, yellow, brown, black. In the Rockies the typical hue is dark brown with a grizzly frosting on the back, source of the nickname "silvertip." It is also called the brown bear. Naturalist George Ord put the second meaning of grizzly into a scientific name (horribilis) after reading of Lewis and Clark's adventures with this "tremendous looking animal."

For years Ursus horribilis was classed as a North American species; today it is considered a race of the circumpolar brown bear, U. arctos. Most authorities classify our grizzlies and mainland bears as one subspecies, U. a. horribilis. Another race, U. a. middendorffi, called the Kodiak bear, inhabits Kodiak and two nearby islands in the Gulf of Alaska. Grizzlies average about twice the weight of the black bear, weighing 600 to 800 pounds (272 to 363 kg) as adult males. But size may not offer a good clue to the identity of a lone bear spotted on a distant trail. Where does the bear loom tallest? At the shoulders? The hump of muscle there identifies the grizzly. Farther back, toward the rump? Then it's a black bear. Grizzlies mate in late spring. Cubs, usually two weighing about 14 ounces (397 g), are born in the winter den; they stay with mother some 18 months. She becomes sexually active as contact within the family group declines and she leaves the cubs. Or she - or her mate - may even run them off. Roots, leaves, and berries form the bulk of the diet, but grizzlies also relish meat: squirrel, elk, moose, deer - whether freshly killed or carrion. They feed in garbage dumps and pay the price of eating humans' sugary food: tooth decay. At times they prey on cattle. They avoid humans - but not always, and with tragic results for both. The grizzly has been eliminated from parts of Canada, Mexico, and the United States. It bestrides the flag of California but is gone from there. South of Canada is has some protection as a threatened species. Even so, it is often shot as a threat to people and livestock. With habitat loss and the growing human presence in the northern Rockies, grizzly survival even is national parks depends upon research and wise management. Yet the grizzly remains a force, a symbol of untrammeled nature: "He is a dignity and power," wrote outdoors man Andy Russell, "matched by no other in the...wilderness."

We should not also forget that USA has a very big coastal line. That means that we must eximine the marine life also, because it is one of the part with a ll American life consist of. So…One of the most famous animals is sea otter. Lolling on a kelp bed along the Pacific Coast, shielded from frigid water by luxurious fur, the sea otter seems to lead an easy life. Its ancestors once lived on land. After taking to the sea eons ago, they did not develop a blubbery layer beneath the skin, as whales did. The otter depends for protection from the cold on the blanket of air trapped in its densely packed fur, a fur so fine is almost doomed the species. Said Captain James Cook after acquiring some pelts from Nootka Indians in 1778: "The fur of these animals . . . is certainly softer and finer than that of any other we know of ." Sea otters were already being killed for their pelts by Europeans, Asians, and North Americans. Cook, China-bound, took furs with him. The demand and the slaughter grew. The fur trade nearly wiped out the species. In 1911 the United States, Great Britain, Russia, and Japan agreed to stop the killing. The near-shore animal has made a substantial comeback in the Aleutian Islands and off the California coast south of Monterey. It shows promise where it has been transplanted. The sea otter, 4 to 6 feet long (122 to 183 cm), usually weighs 33 to 66 pounds (15 to 30 kg), but may reach 100 pounds (45 kg). The male is the largest North American mustelid. Females are about 20 percent smaller. Adults first breed at about four years, courting and mating in the water. A single pup - rarely two - is born six to eight months later. With no margin for error in a litter of one, the newborn is better developed than most mustelid pups, arriving eyes-open with a mouthful of milk teeth. For a year the pup will nurse, nap, and be groomed. Its mother will carry it on her chest while she swims on her back. Males usually live apart. Grooming is not a mere nicety. If the otter’s coat - containing some 800,000,000 fibers - gets soiled or matted, the trapped air is lost and with it buoyancy and insulation. Oil spills and other pollution - and competition with commercial fishermen for some of its favorite foods - are among the problems that still menace the otter.

Surprisingly it exist not only sea otter in America , but also river otter. The engaging river otter cavorts in and out of water through most of the United States and Canada, appearing to enjoy life thoroughly. It can live near people and seems to like showing off for an audience. The otters sleek, streamlined body, with short legs and webbed feet, enables it to swim at speeds reaching seven miles an hour. Adults are as long as 511 inches (130 cm), including the fleshy, tapered tail that serves as a prop on land, a rudder or oar in water. Otters mate in the water, usually in winter or early spring. Male and female then go their separate ways. One to five pups are born nearly a year later in a riverbank den the female prepares - perhaps after evicting a muskrat or beaver. At about 12 weeks, the young venture out of the den. Soon they are swimming and expertly hunting their favorite foods - fish, crayfish, frogs, insects, and small mammals. This adept aquanaut can easily dive to 35 feet. Flaps of skin close its nose and ears and its pulse rate slows, allowing it two minutes underwater before it must pop up for air.

It must be dangerous but North America is also the home of Scorpions. Scorpion poison is usually used in capturing food. With their claws, scorpions capture insects and immobilize them with their venom. Sadly, sometimes people get stung when scorpions defend themselves, or when disturbed or annoyed. Similar to the spider's venom, scorpion venom injures the soft body parts or nervous system of the prey. Many people think that a scorpion sting causes death, but in truth, few species produce this reaction. As a matter of fact, many people have been stung by scorpions and survived to relate their story. In the US only Centruroides sculpturatus causes death, though other sings may be compared to that of a bee sting. Number of deaths caused by scorpions increase rapidly in countries of India, Pakistan, or other dry areas. Because they weigh less than adults, most fatalities are that of young children. Media exaggeration of this causes fear from the public. According to fossils, the scorpions' appearance have changed little over 350 million years. A fossil found in Scotland suggests that scorpions were twice as large then as they are today. Gigantoscorpio (the fossil) is 16 inches long while the largest alive today is 8 inches. Maybe the fossil is a remainder of an extinct scorpion species. There are more than 700 different kinds of scorpions. Five families of scorpions live in the United States. Buthidae makes up the largest of these families, consisting of over 300 species. It also makes up many of the species which are dangerous to man. Vejovidae is the most common family of scorpions found in the US. An exoskeleton makes up the hard outer surface of the scorpion, and sensitive hairs on this exoskeleton detect vibrations (just like spiders). Molting occurs so that the scorpion may grow to its full size. Furst, a new exoskeleton is produced underneath the old one, and the outer shell splits off. Then, the new soft exoskeleton bends and stretches into the new size before hardening. Like the spider, scorpions possess two main body parts; the cephalothorax which is basically the thicker part connecting to six pairs of appendages, and the abdomen which includes a tail with the sting protruding from the end. Most species range from one half to eight inches. The first pair of appendages include insignificant pincers. Large claws on the second pair seize and crush prey while legs make up the last four pairs. Their head consists of six to twelve eyes usually, and a breathing hole commonly located on the abdomen. Reproduction differs between spiders and scorpions. Rather than laying eggs, scorpions bear live young which cling to the mother for an amount of days. In courting, scorpions start with a dance of "holding hands" and walking around, every once in a while bringing mouth parts close for a "kiss." Next, the two jerk their bodies without leg movement. After this, the two tails curve over their backs to touch and even entwine with the other's. This now resembles a fight. Here's what is actually happening. In 1956 a scientist discovered this process to be the male fertilizing the eggs. Spermatophore, the small sperm packet, is glued to the ground by the male. He then leads the female to it, and they walk back and forth till she finds it with her genital opening. Often after this ritual the female will eat the unlucky male. Scorpion eggs stay inside their mother from four months to a year. When they come out, they are surrounded by a thin white sac, soon breaking open to soft shelled babies which cling to their mother. She doesn't feed them, but they take care or themselves after the first molt, several weeks later. When stinging prey, the scorpion curves its tail over its head and thrusts it into the victim in a whip like fashon. The sting wound causes a burning sensation, and closes up directly after the stab to prevent any poison loss. Area will become swollen and discolored resulting with a blister. Effects worsen without treatment which is why receiving medical attention is important. Hunting at night, spiders and insects make up their main diet. Also, being exposed to ultra-violet, these are fluorescent, and easy to spot by night with use of black light. On the end of the tail, the sting organ is made up of two glands which hold the poison.

Really very famous and very special for America is alligator. Alligators are an ancient group of reptiles consisting of only two species of the thirty in the order crocodylia. They differ from crocodiles by their teeth in pattern and arrangement, and also somewhat in the shape of their snouts. The alligators lower teeth point upward into pockets in the upper jaw so when they close their mouth only the upper teeth are left showing. The crocodile has both the upper and lower teeth showing, intermeshed. Their fourth tooth back is enlarged so that it may even end up above the upper jaw. The alligator is found only in the area of the upper Yangtse of China and in south eastern United States. It is believed that it may have once have ranged worldwide but was eventually forced out by the crocodile who are more aggressive. The alligators actually live longer than crocodiles but the crocs eat more which may have added to the problem. Alligators withstand cold better than crocodiles. In 65¡F water an alligator will still surface to breathe but a crocodile will sink and drown. For this reason the crocodiles live only in the most extreme south portion of Florida in the United States, while alligators extend their habitat north to the Carolinas, and west to Texas. Crocodiles are the most numerous of all the crocodilians. They take up space in most tropical regions, but the alligator family has a cousin that might help the alligator clan take back its former territory: the caiman. Caimans are even smaller than crocodiles and quite a few live in South America. These buggers have an apatite and temperment similar to the crocodile, and they are slowly taking the place of the crocodile. Unfortunately, the population of all in the crocodilian order has been majorly depleted by man. From 1880 to 1894 two and a quarter million alligators were slaughtered for their skins. Most states in which the alligator resides have laws protecting them but poachers continue to kill them and sell the hides to northern stats at an alarming rate. The Chinese alligator is protected by the government of China, but whether the population is increasing is unknown. Baby alligators were gathered by the thousands and sold in pet stores all over the Unites States so states had to begin controlling their export. Though baby alligator selling has been halted, their cousin the caiman has been sold in even greater numbers, forcing South American countries to place these species under protection and control. Crocodilians of all kinds make bad pets. Regular house hold temperatures are too low for their guts to work properly. This causes the babies' jaws to be deformed, have a humped back, or die after a few months. Even zoo's have a hard time raising the little critters on the right diet. Grown, the beasties are unpredictable. Alligators will eat anything that moves close enough to get grabbed and will get fit in their mouth. These carnivores prefer to swallow smaller things whole. They will eat large things if they have to, and shake them to dismember them.

And of course well known salamander. Salamanders are timid amphibians that look somewhat like lizards without scales. Most salamanders are small, half a foot or less, but the giant salamander of china and Japan can get 5 feet long, and the hellbender of the United States reaches 3 feet. Most salamanders lay their eggs in water but then live on land in rotten logs, caves, or under rocks. Mudpuppies and some other species are the exception to the rule and live their entire life in the water. On the other end, a few species never enter the water at all. Most salamanders have slimy dark skin and are difficult to see in their natural surroundings, but some species are brightly colored. Some brightly colored species let out a milky white fluid that is poisonous to some animals through their skin if they are handled roughly. Salamanders have long tails to help them swim. Most have four legs, but some that live in the water have only the two front ones. A good sense of smell and a long sticky tongue helps salamanders to catch worms and insects. After young salamanders have hatched they are called larvae. They look a little like frog tadpoles, but they have feathery gills on their head. It may take them anywhere from 42 days to 5 years to become adults. Just before they become adults they lose their gills. As adults the salamanders will breathe with lungs through the mouth and skin.

It is really impossible to describe all the divercity of wildlife in America in few pages. There are a lot of encyclopedias, monographies and researches about them and there is still remain a lot of unexplored. The best way to see and study flora and fauna of USA is to come there, join a group of the best friends, take a tent, a bicycal and enough food and go to the unexplored, remoted places in order to see with your own eyes all the diversity and beauty of animals and plants of North American continent.

Список литературы

Climate and Physiography of North America, Luc Brouillet R. David Whetstone , N.Y, 1995

Botany for the next mellenium, Christine Miot , Harward, 1998

Wildlife of the USA and its territories, John K. Francis, New Orleans, LA, 1987

Descriptive fauna of USA and ajacent islands, Lioger H.A., Harward University, 1994

Для подготовки данной работы были использованы материалы с сайта http://www.easyschool.ru/

рефераты
Новости