рефераты рефераты
Главная страница > Учебное пособие: Неорганическая химия  
Учебное пособие: Неорганическая химия
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Неорганическая химия

СaCl2 D Сa2+ + 2Cl-

1½ Ca2+ + 2е- " Caо

1½2Cl- - 2е- " Cl2о #

Ca2+ + 2Сl- электролиз Caо + Сlо2#

CaСl2 электролиз Ca + Сl2#


Металлический кальций применяется в качестве восстановителя при получении таких металлов, как торий цирконий, ванадий из их соединений. В небольшом количестве он используется в составе сплавов.

На воздухе кальций при обычной температуре окисляется, покрываясь оксидной пленкой.

Кальций реагирует с водородом, образуя гидрид CaH2 – стойкое соединение, вступающее во взаимодействие с водой с выделением водорода:

CaH2 + 2H2O " Ca(OH)2 + 2H2↑

Окись кальция получают из карбоната кальция CaCO3 при его термической диссоциации

CaCO3 " CaO +СО2 – Q

Эта реакция сопровождается поглощением теплоты, поэтому с повышением температуры равновесие смещается вправо, т.е. диссоциация возрастает.

Химически чистая окись кальция представляет собой бесцветные кристаллы с tпл.=2600°С и плотностью 3,4 г/см3. Она бурно реагирует с водой с выделением тепла:

CaO + H2O " Ca(OH)2 + 15,6 ккал/моль

Образуется гидроокись кальция которая имеет кристаллическую структуру. Растворимость в воде её невелика и уменьшается с повышением температуры.

Технический продукт, получаемый обжигом известняков, получаемый обжигом известняков, состоит в основном из окиси кальция и называется негашеной известью. В результате взаимодействия её с водой (гашения) образуется гашеная известь, основную массу которой составляет Ca(OH)2.

При нагревании Ca(OH)2 диссоциирует на CaO и водяные пары.

Соли кальция. Фторид кальция CaF2 в природе встречается в виде плавикового шпата. Используется для получения HF и различных фторидов. Хлорид кальция CaCl2 – белая, чрезвычайно гигроскопичная масса, расплывающаяся на воздухе. Растворение безводного CaCl2 в воде сопровождается разогреванием. Хлорид кальция применяют в качестве добавки, регулирующей процесс твердения цемента. Нитрат кальция Ca(NO3)2 – кальциевая селитра используется как азотное удобрение. Хлорная известь CaOCl2.nH2O применяется как дезинфицирующее средство.

Сульфат кальция при обычных температурах выпадает из водных растворов в форме дигидрата CaSO4.2H2O. Это прозрачные кристаллы способные при нагревании терять частично или полностью воду, переходя в соединения состава CaSO4.0,5H2O и CaSO4. Дегидратация происходит ступенчато. При умеренном нагревании двухводная соль переходит в полуводный гипс.

Полуводный гипс и растворимая форма безводного сульфата кальция способны присоединять воду, образуя CaSO4.2H2O в виде твердого камневидного тела. На этом основано применение полуводного гипса и ангидрита в качестве вяжущих строительных материалов.

При высокой температуре (t » 960°С) наблюдается разложение сульфата кальция:

2CaSO4 = 2CaО + 2SO2 + О2

Этим процессом пользуются для получения серной кислоты. Обычно такое производство комбинируют с производством цемента. Обжигу подвергают смесь глины с гипсом.

В присутствии солей NH4Cl, KNO3, Mg(NO3)2 или кислот HCl, H3PO4 растворимость сульфата кальция возрастает.

Известны две соли угольной кислоты: карбонат CaCO3 и гидрокарбонат Ca(HCO3)2. первая нерастворимая в воде и обладает сравнительно высокой термической устойчивостью, а гидрокарбонат в обычных условиях существует только в водных растворах и обладает малой термической устойчивостью.

Образование гидрокарбоната кальция в природных условиях имеет место, когда породы, содержащие СаСО3, подвергаются воздействию воды и растворенной в ней СО2:

СаСО3 + СО2 + Н2О = Ca(HCO3)2

В этой реакции в присутствии твердой фазы СаСО3 при практически постоянной концентрации воды константа равновесия равна:

Поэтому при постоянной температуре с повышением концентрации СО2 в газовой фазе и в растворе должна возрастать и концентрация Ca(HCO3)2 отвечающая равновесию раствора с твердым СаСО3. Это увеличение количества Ca(HCO3)2 происходит за счет уменьшения количества СаСО3. таким образом, повышение концентрации СО2 в растворе вызывает переход соответствующего количества карбоната кальция в гидрокарбонат, что сопровождается понижением концентрации СО2 до равновесной. Поэтому СО2, избыточная по отношению к равновесной, носит название агрессивной двуокиси углерода. Если такая повышенная концентрация СО2 в воде поддерживается за счет поступления из вне, то вода становится агрессивной по отношению к карбонату кальция.

В противоположном случае при понижении давления СО2 над раствором, гидрокарбонат кальция разлагается с выделением в осадок СаСО3. В природных условиях процесс происходит когда глубинные воды, насыщенные двуокисью углерода под давлением, выходят на поверхность.

При повышении температуры равновесие реакции смещается влево. При кипячении водного раствора, содержащего гидрокарбонат, разлагается с образованием осадка СаСО3.

Важным техническим продуктом является карбид кальция СаС2. Карбид получают из извести и угля в мощных электрических печах при 1900-1980°С на основе реакции

СаО + 3С = СаС2 + СО – 111ккал

Процесс сопровождается поглощением значительного количества теплоты. Химически чистый карбид представляет собой бесцветные кристаллы; технический продукт в зависимости от количества и характера примесей имеет окраску от светло-серого до черной. В числе примесей часто содержатся вредные и опасные сульфиды, фосфиды кальция и других металлов. Карбид кальция служит исходным веществом для получения ацетилена по реакции

СаС2 + 2Н2О = Са(ОН)2 + С2Н2

Примеси сульфидов арсенидов и фосфидов кальция при взаимодействии с водой образуют H2S, AsH3, PH3, присутствие которых в ацетилене нежелательно из-за их ядовитости резкого запаха и склонности к самовоспламенению (PH3). Чистый ацетилен запаха не имеет. Карбид кальция в больших количествах расходуется на получение ацетилена, который применяется для резки и сварки металлов и в качестве исходного материала для промышленного синтеза.

Контрольные вопросы

1.  Почему щелочные металлы неустойчивы на воздухе и в водных растворах?

2.  Напишите электронные формулы Na, Ba2+.

3.  Изобразите схематически структуру пероксида натрия.

4.  Как изменяются радиусы и потенциалы ионизации атомов щелочных металлов с ростом порядкового номера элементов? Дать объяснение наблюдающимся закономерностям на основе электронного строения атомов.

5.  Чем объяснить различную последовательность расположения щелочных металлов в ряду напряжений и периодической системе?

6.  Можно ли получить щелочные металлы электролизом? Ответ поясните. Приведите примеры уравнений электродных реакций получения щелочного металла.

7.  Почему щелочноземельные металлы неустойчивы на воздухе, а бериллий и магний достаточно устойчивы?

8.  В чем отличие оксидов бериллия и оксидов других элементов II группы главной подгруппы? Как изменяются восстановительные свойства элементов II группы главной подгруппы по мере возрастания порядкового номера элемента и почему?

9.  Как и почему изменяются основные свойства в ряду LiOH-CsOH?

10.  Написать уравнения реакций получения карбоната натрия: а) силиката натрия; б) ацетата натрия; в) нитрата натрия; г) гидросульфата натрия; д) сульфита натрия.

11.  Закончить уравнения реакций:

12.  а) Na2O2 + KI + H2SO4 ® б) Li3N + H2O ® в) К + O2(избыток) ® г) KNO3 нагревание®


1.3 р-элементы – металлы

Алюминий

Алюминий - основной представитель металлов главной подгруппы III группы периодической системы химических элементов Д. И. Менделеева. Атомный номер 13, относительная атомная масса 26,98154. У алюминия единственный устойчивый изотоп 27А1. Свойства аналогов алюминия-галлия, индия и таллия во многом напоминают свойства алюминия. Этому причина - одинаковое строение внешнего электронного слоя элементов s2p1, вследствие которого все они проявляют степень окисления +3. Другие степени окисления нехарактерны, за исключением соединений одновалентного таллия, по свойствам близким к соединениям элементов I группы. В связи с этим будут рассмотрены свойства только одного элемента-алюминия и его соединений.

Алюминий - серебристо-белый легкий металл, р - 2,699 г/см3, Тпл. = 660,24 °С, Ткип. = 2500 °С. Он очень пластичен, легко прокатывается в фольгу и протягивается в проволоку. Прекрасный проводник электрического тока - его электрическая проводимость сравнима с электрической проводимостью меди. Поверхность металла всегда покрыта очень тонкой и очень плотной пленкой оксида А12О3. Эта пленка оптически прозрачна и сохраняет отражающую способность металла (блеск).

Алюминий весьма активен, если нет защитной пленки А12О3, инертного в химическом отношении вещества. По положению в электрохимическом ряду напряжений металлов алюминий стоит левее железа, однако пленка оксида алюминия практически останавливает дальнейшее окисление металла и препятствует его взаимодействию с водой и некоторыми кислотами. Если удалить защитную пленку химическим способом (например, раствором щелочи), то металл начинает энергично взаимодействовать с водой с выделением водорода:


2А1 + 6Н2О = 2А1(ОН)3 + ЗН2↑

Порошкообразный алюминий сгорает на воздухе с ослепительной вспышкой. Алюминий непосредственно реагирует с галогенами, образуя галогениды:

2А1 + ЗС12 = 2А1С13

При сильном нагревании он взаимодействует с серой, углеродом и азотом с образованием сульфида A12S3, карбида А14С3 и нитрида A1N. Эти соединения легко гидролизуются с выделением соответственно сероводорода, метана, аммиака и гидроксида алюминия.

Алюминий легко растворяется в соляной кислоте любой концентрации:

Страницы: 1, 2, 3, 4, 5, 6

рефераты
Новости