рефераты рефераты
Главная страница > Реферат: Управление структурно-механическими свойствами материалов  
Реферат: Управление структурно-механическими свойствами материалов
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Управление структурно-механическими свойствами материалов

Для студней ВМС процесс синерезиса может быть обратимым. Иногда достаточно простого нагревания, чтобы вернуть систему в первоначальное (до синерезиса) состояние.

Широкий спектр структурно-механических свойств отражает многообразие природных и синтетических тел, большинство из которых являются дисперсными системами.

Благодаря смешению фаз с различной природой и агрегатным состоянием, размерами частиц и взаимодействия между ними, процессам, протекающим в дисперсных системах и т.д., их структурно-механические свойства представляются непрерывным и бесконечным рядом не только промежуточных, аддитивно складываемых свойств, но и качественно новых, не присущим отдельным компонентам. Умение управлять процессами, протекающих в дисперсных системах, позволяет получать материалы с заданными свойствами.

Когда коллоидные частицы подходят очень близко друг к другу, их диффузные слои перекрываются и взаимодействуют. Это взаимодействие совершается в тонкой прослойке дисперсионной среды, разделяющей частицы. Устойчивость лиофобных золей определяется, главным образом, особыми свойствами этих тонких жидких слоёв.

Когда две коллоидные частицы, находящиеся в дисперсионной среде, сближаются, вначале они разделены толстым слоем жидкости, который постепенно утончается и в результате становится очень тонким.

После образования тонкого жидкого слоя утончение его может продолжаться, и это ещё больше сближает частицы. Утончение жидкого слоя заканчивается либо разрывом его при некоторой малой толщине, либо достижением некоторой равновесной толщины, которая далее не уменьшается. В первом случае частицы слипаются, а во втором – нет. Свойства этого тонкого жидкостного слоя определяют, произойдёт ли коагуляция, т. е. определяют устойчивость коллоидов.

Исследования показали, что утончение тонкого слоя при сближении частиц происходит путём вытекания из него жидкости. Когда жидкий слой становится достаточно тонким (толщина его меньше 100-200 нм), свойства жидкости в нём начинают сильно отличаться от свойств жидкости в окружающем объёме. В слое появляется дополнительное давление, которое В. Дерягин назвал “расклинивающим давлением”. По определению Дерягина, оно положительно, когда давление в слое понижено, это противодействует вытеканию из него жидкости, т.е. препятствует сближению коллоидных частиц. Отсюда происходит название “расклинивающее”, т.е. давление, которое раздвигает, “расклинивает” частицы. Расклинивающее давление может быть и отрицательным, т. е. повышать давление в слое, ускорять вытекание из него жидкости и способствовать сближению частиц.

Возникновение расклинивающего давления в тонких жидких слоях обусловлено такими факторами:

1) электростатическим взаимодействием в слое, обусловленное взаимным перекрыванием двойных электрических слоев (ДЭС) – это силы отталкивания с энергией Uотт>0;

2) Ван-дер-Ваальсовыми силами притяжения с энергией Uпр<0;

1)  Адсорбционными силами, возникающими при перекрывании молекулярных адсорбционных слоев, где повышенная концентрация создает осмотический поток в сторону пленки, приводит к росту поверхностной энергии системы и, следовательно, к отталкиванию;

2)  Структурным, связанным с образованием граничных слоев растворителя с особой структурой. Он характерен для лиофильных систем и соответствует термодинамическим представлениям об адсорбционно-сольватном барьере. Эффект обычно положительны.

Результирующая энергия межчастичного взаимодействия U определяется как сумма двух составляющих:

Если |Uотт| > |Uпр|, то преобладают силы отталкивания, коагуляция не происходит, золь является агрегативно устойчивым. В противоположном случае преобладают силы притяжения между частицами, происходит коагуляция.

Рассмотрим количественную интерпретацию этих сил.

Электростатическое отталкивание между мицеллами возникает при перекрывании диффузных слоёв противоионов. Энергия этого взаимодействия:

,

где h – расстояние между частицами;  - величина, обратная толщине диффузного слоя δ; A – величина, не зависящая от h и определяемая параметрами ДЭС.

Величины א и A могут быть рассчитаны на основе теории ДЭС.

Расчёты показывают, что энергия отталкивания уменьшается:

·  при увеличении зарядов противоионов и их концентрации;

·  при уменьшении по абсолютной величине φо и z-потенциала.

Из уравнения следует, что Uотт убывает с увеличением расстояния между частицами h по экспоненциальному закону.

Энергия притяжения связана, главным образом, с дисперсионным взаимодействием между молекулами. Она может быть рассчитана по уравнению

Жидкообразные и твердообразные тела. Ньютоновские и неньютовские жидкости. Псевдопластические и дилатантные жидкообразные тела. Уравнение Оствальда-Вейля. Бингамовские и небингамовские твердообразные тела. Тиксотропия и реопексия

 Предложенная П.А. Ребиндером классификация структур дисперсных систем помогает связать механические свойства тел с их строением.

 В соответствии с реологическими свойствами все реальные тела делят на жидкообразные (предел текучести равен нулю, РТ = 0) и твердообразные (РТ > 0).

 Жидкообразные тела классифицируют на ньютоновские и неньютоновские жидкости. Ньютоновские жидкости – это системы, вязкость которых не зависит от напряжения сдвига и является постоянной величиной в соответствии с законом Ньютона. Течение неньютоновских жидкостей не следует закону Ньютона, их вязкость зависит от напряжения сдвига. Неньютоновские жидкости подразделяются на стационарные, реологические свойства которых не меняются во времени, и нестационарные, для которых эти характеристики зависят от времени. Неньютоновские стационарные жидкости подразделяются на псевдопластические и дилатантные (рис. 4.1.2.1 и 4.1.2.2).

Исходя из экспериментальных исследований, графические зависимости напряжения сдвига от скорости деформации в логарифмических координатах часто линейны и различаются только тангенсом угла наклона прямой, поэтому общую зависимость напряжения сдвига Р от скорости деформации g можно выразить в виде степенной функции:

,

где k и n – постоянные, характеризующие данную жидкообразную систему.

Двухпараметрическое уравнение – математическая модель Оствальда-Вейля: ньютоновская вязкость h неньютоновской стационарной жидкости определяется уравнением

.

При n = 1 жидкость ньютоновская (кривая 1 рис. 4.1.2.1). Отклонение n от 1 характеризует степень отклонения свойств жидкости от ньютоновских.

Разбавленные дисперсные системы с равноосными частицами обычно – ньютоновские жидкости. Псевдопластические жидкости – суспензии с асимметричными частицами, растворы полимеров производные целлюлозы). Дилатантные жидкости в химической технологии встречаются редко, их свойствыа характерны для некоторых керамических масс. Дилатантное поведение наблюдается у дисперсных систем с большим содержанием твердой фазы.

Твердообразные дисперсные системы подразделяют на бингамовские и небингамовские, поведение которых описывается уравнением:

При n = 1 (рис. 4.1.2.2) – бингамовское тело; n > 1 – пластическое дилатантное тело; n < 1 – псевдопластическое твердообразное тело.

К бингамовским твердообразным телам по реологическим свойствам близки пульпы, шламы, буровые растворы, зубные пасты и т.п.

Для нестационарных систем характерны явления тиксотропии и реопексии.

Тиксотропия – специфическое свойство коагуляционных структур, выражается в восстановлении контактов в разрушенной структуре между частицами дисперсной фазы вследствие подвижности среды и броуновского движения частиц.

Реопексия – возрастание прочности структуры со временем при действии напряжения сдвига (т.е. это явление, противоположное тиксотропии).

,

где AГ – константа Гамакера.

Из этого уравнения следует, что энергия притяжения изменяется с увеличением расстояния между частицами h обратно пропорционально квадрату расстояния. Таким образом, притяжение сравнительно медленно уменьшается с увеличением расстояния. Так, при увеличении h в 100 раз энергия притяжения уменьшается в 104 раз. В то же время энергия отталкивания уменьшается в 1043 раз.

Результирующая энергия взаимодействия между частицами, находящимися на расстоянии h, определяется уравнением:


Страницы: 1, 2

рефераты
Новости