рефераты рефераты
Главная страница > Реферат: Простые механизмы  
Реферат: Простые механизмы
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Простые механизмы

Проделаем теперь то же самое с планером, который, хотя и "скользит вниз" по тонкому воздуху вместо жесткой поверхности, однако, подчиняется тем же правилам. Вес планера действует в направлении прямо вниз. Разла­гая его на две компоненты, одна из которых противоположна подъемной силе крыла, а вторая тянет вперед в направлении планирования, мы приходим к балансу всех сил.

(В случае, если вас интересует, откуда взялась энергия, заменяющая работу двигателя самолета, ответ прост: вы сами запасли ее, взбираясь или въезжая на холм, а теперь используете ее, возвращаясь по воздуху к подножию холма).

(В хорошую погоду есть возможности и средства подняться гораздо выше, чем точка взлета, и оставаться там часами — одно их самых больших удовольствий этого спорта, но там вы используете силу входящих потоков воздуха. Это больше подходит под определение "парения", а не "глайдирования", и мы рассмотрим эти возможности позже в этой книжке).

Угол атаки

Мы видели, что, когда наше крыло или надутый купол параглайдера планирует вперед, поток воздуха создает разницу давлений под крылом и над ним, в результате чего появляется подъемная сила, поддерживающая нас, кроме того, создается меньшая сила сопротивления, которую необходимо преодолеть "тянущей" компонентой нашего веса.

В предыдущих иллюстрациях мы рисовали поток воздуха под крылом параллельно его плоскому днищу, как на рисунке выше.

Угол между этой плоской нижней поверхностью крыла и потоком воздуха, с которым оно встречается, называется УГЛОМ АТАКИ. (Это не совсем верно для всех профилей, но мы примем, что это так для того, чтобы упростить наши иллюстрации). Когда нижняя поверхность крыла параллельна потоку воздуха, угла атаки нет, т. е. он равен нулю. (Пожалуйста, отметьте, что крыло при этом уже создает подъемную силу за счет кривизны своей поверхности).

Теперь посмотрим, что произойдет, если мы постепенно будем увеличивать угол атаки, наклоняя крыло вверх и заставляя поток воздуха ударяться не только в переднюю кромку, но и отчасти снизу.

Разумеется, при той же скорости воздуха подъемная сила (а также сопротивление воздуха) возрастут. Это происходит из-за того, что воздух, идущий поверх крыла, теперь должен пройти больший путь до воссоединения с потоком под крылом, и падение давления (всасывание вверх) на вершине крыла больше. Что еще важнее, поток воздуха снизу крыла оказывает давление на его нижнюю наклонную поверхность, увеличивая общее давление и выталкивая крыло вверх еще больше.

Это чудесно. Используя наши возможности управления, мы наклоняем крыло до угла атаки в пять градусов, и наша подъемная сила увеличивается. Десять градусов — и она еще больше. Пятнадцать градусов — и мы получаем ужасающую подъемную силу от нашего крыла. Двадцать градусов и ...

Вся подъемная сила пропала и мы резко ныряем вниз!

Что случилось?

Это называется ПОТЕРЯ СКОРОСТИ. Пока мы наклоняли наш профиль все к большим углам атаки, воздух должен был проходить через вершину крыла все больший и больший путь, и путь этот должен был становиться все более кривым. В какой-то точке, обычно между 15 и 20 градусов, воздух уже не в состоянии двигаться так, он разбивается на турбулентные вихри — это явление называется турбуленцией — и прекращает обеспечивать подъемную силу, оставляя нас наедине с силой сопротивления воздуха. На практике, если потеря скорости происходит на большой высоте, вы вновь набираете ее в результате погружения и возвращаетесь опять к нормальному полету, потеряв часть высоты и испытав учащенное сердцебиение. Но на более низких высотах вы можете нырнуть в землю прежде, чем наберется подъемная сила. Потеря скорости — это одна из первых вещей, которых вас научат избегать на курсах параглайдинга.

Чтобы осознать все эти изменения подъемной силы, введем в рассмотрение еще одно уравнение и один график. Уравнение (которое выглядит аналогичным уравнению для силы сопротивления, записанному несколькими стра­ницами раньше) описывает ПОДЪЕМНУЮ СИЛУ для данного крыла:

ПОДЪЕМНАЯ СИЛА = 1/2 х р х cl х А х V2

Мы уже встречали р (плотность воздуха) и V (квадрат нашей скорости). "А" — это площадь или поверхность нашего парашюта (обычно между 20 и 30 м ). Новое обо­значение здесь — это cl — КОЭФФИЦИЕНТ ПОДЪЕМНОЙ СИЛЫ. Он зависит всегда от конкретной формы вашего профиля, но, кроме того, как мы только что виде­ли, от угла атаки. Если мы нарисуем график, где на гори­зонтальной оси показаны различные углы атаки, а на вертикальной — коэффициент подъемной силы, то получим примерно следующий вид кривой:

При нулевом угле атаки на вертикальной оси мы ви­дим, что уже существует некоторая подъемная сила. (Кривая начинается со значения около 0,2). На 5 градусах мы получаем по кривой коэффициент подъема 0,4. Подъемная сила крыла удвоилась! При 10 градусах коэф­фициент равен 0,6, а при 15 — чуть больше, но кривая выравнивается, мы не получаем большой подъемной силы. Где-то между 15 и 20 градусами она полностью падает; больше нет подъемной силы, и крыло падает.

Угол глайдирования

Наблюдая со стороны за глайдирующим парашютом, вы замечаете, что его купол имеет отрицательный угол по отношению к горизонту, т. е. передняя кромка находится ниже задней. Не обращайте на это внимания. Мы интересуемся только двумя "невидными" ушами. Направлением нашего пути глайдирования, которое также задает направ­ление воздушного потока, и углом атаки нашего крыла относительно этого направления:

В спокойном воздухе (о ветре мы расскажем позже) глайдирующий парашют покрывает расстояние в несколько раз больше, чем высота, с которой он стартовал. Это отношение (расстояние, деленное на высоту), называемое отношением глайдирования, может меняться от умеренного 3:1 для простого (но стабильного и безопасного) учебного парашюта до 6:1 для парашюта высокого качества.

Международно-правовые аспекты проблемы экологии космоса

Основополагающим документом, имеющим отношение к проблеме сохранения устойчивого экологического состояния космической среды, является Договор по космосу (1967 г.). Статья 1 этого Договора предусматривает осуществление космической деятельности таким образом, чтобы не затруднить и не нарушить права других стран на мирное освоение космоса. В статье 4 Договора подчеркивается, что государства несут международную ответственность за национальную деятельность в космическом пространстве (в том числе и грозящую негативными экологически-ми последствиями), независимо от того, осуществляется ли она правительственными или неправительственными юридическими лицами или организациями. Статья 7 предусматривает, что участники Договора, осуществляющие или организующие запуск объекта в космос, а также государство, с территории или установок которого производится запуск космического объекта, несут международную ответственность за ущерб, причиненный такими объектами или их частями на Земле, в воздушном или космическом пространстве. Согласно статье 9 Договора его участник обязан провести международные консультации, если его деятельность или запланированный эксперимент создают потенциально вредные помехи деятельности других государств в деле мирного освоения космоса (при этом отсутствуют четкие критерии, относящие помехи к категории “вредных”, а также механизм проведения и не определена форма консультаций). И наконец, та же 9-я статья Договора призывает государства информировать Генерального секретаря ООН, общественность и международное научное сообщество в максимально возможной и практически осуществимой степени о характере, ходе, местах и результатах своей космической деятельности, в том числе и сопряженной с загрязнением Земли и космоса.

Особое место в международно-правовом регулировании вопросов экологии космоса принадлежит “Конвенции об ответственности за ущерб, причиненный космическими объектами” (1972 г.). Конвенция налагает на государство, осуществляющее запуск, абсолютную ответственность за ущерб, нанесенный космическими объектами на поверхности Земли и воздушному судну в полете (ст. 2). В случае если причиняется ущерб космическому объекту одного государства космическим объектом другого государства, послед нее несет ответственность только тогда, когда ущерб причинен по вине или его,или лиц,за которых оно отвечает. Определяя термин “космический объект”, как включающий составные части “космического объекта”, а также средства его доставки (ракеты-носители) и его части (ступени и его отдельные узлы), не обязательно функционирующие, конвенция сохраняет потенциальную ответственность запускающего государства за загрязнение космоса.

Установление ответственности за ущерб, наносимый космическим объектом космической окружающей среде весьма проблематично. Здесь важно учитывать, что ответственность возникает лишь в результате ущерба. Этот термин определяется в статье 1 Конвенции как “лишение жизни, телесное повреждение или иное повреждение здоровья; уничтожение или повреждение имущества государств либо физических и юридических лиц или имущества международных межправительственных организаций”. Несмотря на довольно значительный перечень возможных ситуаций, очевидно, что все они относятся к физическому ущербу и не распространяются на космическую среду. “Соглашение о спасении космонавтов и возвращении объектов, запущенных в космическое пространство” (1968 г.) также содержит ряд положений, имеющих косвенное отношение к экологии космоса. По этому Соглашению сторона,обнаружившая,что космический объект или его часть приземлился на ее территории, обязана уведомить об этом как страну, запустившую объект в космос, так и ООН. Если у страны,обнаружившей этот объект,есть причины полагать, что сам объект или его часть представляет какую-то угрозу или вред,то эта страна может уведомить об этом государство, запустившее объект, которое, в свою очередь, обязано предпринять немедленные эффективные шаги (под руководством и контролем страны,обнаружившей объект) для устранения угрозы или вреда.

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости