рефераты рефераты
Главная страница > Реферат: Пространственная симметрия у живых организмов  
Реферат: Пространственная симметрия у живых организмов
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Пространственная симметрия у живых организмов

В билатеральной симметрии есть такие же три оси, как и в бирадиальной, но имеется только одна пара симметричных сторон – латеральных, т.к. другие две стороны, называемые дорсальной (спина) и вентральной (перед) поверхностями, неодинаковы. Таким образом, только одна срединная продольная, или саггитальная, плоскость симметрии делит билатеральное животное на симметричные половины. Билатеральность присуща большинству животных, включая насекомых, рыб, амфибий, рептилий, птиц, многих ракообразных, млекопитающих.

Симметрии также фиксируются и в ботанике. Здесь выделяют радиальную (корни, стебли, цветки), билатеральную (листья), винтовую симметрию подобия (спиральность расположения листьев на стебле, зачатков листьев и цветков на конусе нарастания, цветков в корзинке) и криволинейную (правые и левые листья, семена, плоды, сосуды древесины).

Полной геометрической симметрии у организмов не бывает. Обычно симметрия проявляется в общей конфигурации тела и в расположении некоторых органов. “Если бы все в природе было закономерно, то в каждом явлении находила бы отражение полная симметрия таких всеобщих законов природы, как те, которые формируются теорией относительности. Уже сам факт, что дело обстоит совсем не так, доказывает, что случайность является существенной особенностью нашего мира” – писал Г. Вейль.

Сравнение разных групп организмов показывает, что различные типы симметрии появляются в процессе исторического развития организмов как приспособление к определённому образу жизни, к определённым силовым отношениям с окружающей средой.

Многие виды симметрии нашли отражение во внешнем строении животных, в конструкции их внутренних органов, в конфигурации молекул органических веществ

Двусторонняя симметрия обычна у творений природы: горные хребты и пропасти, овраги, русла рек, другие элементы рельефа местности, многие растения могут обладать двусторонней симметрией.

Даже теперь, когда животный мир нашей планеты в общих чертах изучен, примеры асимметрии немногочисленны и часто относятся к устройству скрытых от глаз внутренних органов. У брюхоногих моллюсков одна почка, одна жабра, одна половая железа. В соответствии с этим дыхательное, половое и анальное отверстия и отверстие мочеточника находятся на правой стороне тела.

Еще меньше примеров асимметрии внешнего строения животных. У одних особей моллюсков раковины закручены по часовой, у других против часовой стрелки. У клестов, питающихся семенами еловых или сосновых шишек, большой крючкообразный клюв имеет крестообразное строение. У птенцов он достаточно симметричен, но по мере взросления птиц подклювье отклоняется влево или вправо.

Двусторонняя симметрия возникла на определенной стадии развития обитателей Земли. Первые живые организмы, зародившиеся в Мировом океане, обладали шаровидной симметрией. Несмотря на то, что их потомки имеют более сложную организацию, они сохраняют шаровидную симметрию. В однородной среде шарообразная форма организма наиболее удобна для равномерного извлечения всеми частями тела кислорода и растворенных в воде питательных веществ. В процессе исторического развития организмов происходила дифференцировка участков тела у взвешенных в воде организмов, что привело к возникновению многоосной симметрии. У многоосносимметричных животных (солнечники) оси симметрии, проходящие через выросты тела, называются радиусами, а промежутки между ними – интеррадиусами.

Для крупных организмов, не взвешенных в воде, сила тяжести создаёт резко отличные силовые отношения вдоль вертикальной оси для верхней и нижней сторон. Поэтому для прикреплено живущих организмов, обитающих обычно на горизонтальной поверхности (дно моря, поверхность суши) в среде с одинаковыми силовыми воздействиями в направлениях, перпендикулярных силе тяжести силовые условия различны лишь в направлении силы тяжести. Такие организмы построены по типу радиальной симметрии (сидячие кишечнополостные, морские лилии, плодовые тела высших грибов, стебли высших растений).

Изменение силовых соотношений в одном из направлений создаёт различие условий для частей, подвергающихся или не подвергающихся силовым воздействиям, что приводит к замене радиальной симметрии двусторонней. Поэтому животные, которые передвигаются в каком – либо избранном направлении, приобрели двустороннюю симметрию. Для этих организмов свойственно симметричное расположение парных органов, что помогает им сохранять равновесие при передвижении, а значит добывать себе пищу и таким образом существовать. Наиболее распространенной причиной изменения силовых отношений в направлении, перпендикулярном силе тяжести, приводящей к билатеральной симметрии, является переход организмов к активному поступательному движению, при котором передний и задний концы тела находятся в противоположных силовых условиях. Нарушение билатеральной симметрии привело бы к неизбежному торможению одной из сторон и изменению поступательного движения в круговое. Поэтому активно подвижные животные (членистоногие и позвоночные) двустороннесимметричны.

Двусторонняя симметрия возникает и у неподвижных организмов, обитающих на негоризонтальных субстратах, что объясняется неодинаковыми условиями сопротивления силы тяжести со стороны прикрепленной и свободной частей. Поэтому двустороннесимметричны листья, зигоморфные цветки, лучи коралловых полипов.

Так кроны одиночно растущих на горизонтальной поверхности деревьев, защищенных от ветра, радиально симметричны, а в открытых для сильных ветров местах – билатерально симметричны, причем плоскость симметрии проходит по направлению преобладающих ветров.

Безусловно, симметрия тела человека и животных далеко не абсолютна. Мы прекрасно знаем, что некоторые органы (печень, селезенка, сердце) не обладают симметрией, да к тому же и расположены асимметрично.

Возникнув в связи с потребностью живых организмов целенаправленно передвигаться в пространстве, двусторонняя симметрия в первую очередь коснулась органов движения: ног у ракообразных, пауков, насекомых, амфибий, рептилий и млекопитающих, крыльев у птиц и летучих мышей, плавников у кальмаров, миног, рыб, тюленей, китов и дельфинов.

Так, у улитки с ее асимметрично закрученной раковиной тело, и в том числе «нога» (массивный мускулистый нерасчлененный орган с широкой нижней поверхностью, называемой подошвой, с помощью которой она ползет по твердому субстрату), вполне симметричны. То же относится и к двигательным органам камбалы.

Неудивительно, что органы, управляющие движением, вся нервная система, включая спинной и головной мозг животных и человека, также имеют двустороннюю симметрию. При таком устройстве мозга проще организовать слаженную работу органов движения, чтобы активно перемещаться в пространстве, поддерживать равновесие тела и совершать другие координированные движения.

 

Глава 3. Симметрия ДНК

Широко известна круговая таблица генетического кода, впервые опубликованная в 1965 г. Кодоны в ней расположены по часовой стрелке в порядке U, C, A, G в каждом уровне. Представим себе кодон в виде XYZ. Если XY определяет “смысл” (т.е. аминокислоту), то кодон называется “сильным”. Если же для определения смысла кодона нужен определенный Z, то такой кодон называется “слабым”. Можно наблюдать симметрию генетического кода в круговой форме по “силе” и “слабости”. Т.е. при повороте на 180˚ происходит совпадение сильных и слабых кодонов без исключения. Вертикальная и перпендикулярная плоскости и отражение во всех позициях дают замену сильных кодонов на слабые и наоборот. Тот же эффект имеет место при отражении относительно горизонтальной перпендикулярной плоскости. А. Волохонский установил соответствие между общей структурой генетического кода, рядом биномиального разложения 26 и одним из Платоновых тел – икосаэдром. Он также полагает, что икосаэдральная форма и пентамерная симметрия являются фундаментальными в организации живого вещества, хотя такие форма и симметрия известны и для неорганических тел. С этой точки зрения генетический код представляется Волохонским не как случайный продукт эволюционных блужданий, а как закономерное и необходимое следствие исходных принципов – икосаэдральности и пентамерной симметрии, выбранных живой природой для его осуществления, что в известной степени подтверждает выводы О.В. Трапезова. Результаты Волохонского неоднозначны и спорны, хотя, по мнению Урманцева, “ни в какой степени не снижают большой ценности установленных им красивых соответствий”.

В каком-то смысле можно считать антисимметричными друг к другу (“ключ-замок”) пары нуклеотидов аденозин-уридин, аденозин-тимидин, гуанозин-цитидин в РНК и ДНК. Иные их сочетания уже нарушают строй и порядок. В последовательности ДНК существуют палиндромы, порядок нуклеотидов в которых самокомплементарен, например GTACTTG|CAAGTAC. Это как бы является своеобразным проявлением зеркальной антисимметрии. Сайты (участки ДНК), опознаваемые и расщепляемые некоторыми рестрикционными ферментами, имеют ось симметрии второго порядка. Часть рестриктаз расщепляет полинуклеотидную цепь так, что вследствие симметрии расщепляемой последовательности образуются так называемые “липкие” концы. Они могут взаимодействовать друг с другом, образуя совершенные двуспиральные участки.

В-форма спирали ДНК всем известна по множеству рисунков и схем, именно эту форму описали Уотсон и Крик. Это упорядоченная, изящная структура. Спираль может образовывать так называемую суперспираль. Чтобы представить себе это хотя бы приблизительно – вспомним, как скручивается в спираль уже свернутый в “пружинку” провод телефона. Надо заметить, что в то время как у В-формы ДНК существуют малая и большая бороздки, суперспираль скручена “равномерно”.

Описание: 1430-7.jpg-

Страницы: 1, 2, 3

рефераты
Новости