рефераты рефераты
Главная страница > Курсовая работа: Реализация технологии некаталитической очистки дымовых газов от оксидов азота на мусоросжигательном заводе  
Курсовая работа: Реализация технологии некаталитической очистки дымовых газов от оксидов азота на мусоросжигательном заводе
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Реализация технологии некаталитической очистки дымовых газов от оксидов азота на мусоросжигательном заводе

Отработанная серная кислота, содержащая 65–85% H2SO4, поступает на концентрирование. При концентрировании азотной кислоты с применением 92–93%-ной серной кислоты расход последней значительно сокращается при подаче на концентрирование 59–60%-ной HNO3 вместо 48–50%-ной. Поэтому в некоторых случаях выгодно проводить предварительное концентрирование 50%-ной HNO3 до 60%-ной путем простого упаривания.

Большим недостатком концентрирования азотной кислоты с помощью серной кислоты является высокое содержание паров и тумана H2SO4 в выхлопных газах после электрофильтров (0,3–0,8 г/м3 газа). Поэтому серную кислоту заменяют, например, нитратом магния или цинка.

Концентрирование азотной кислоты с помощью нитрата магния.

Этот способ концентрирования обеспечивает получение чистой концентрированной азотной кислоты без вредных выбросов в атмосферу. Однако у него есть ряд существенных недостатков, не позволяющих использовать такой способ повсеместно. В первую очередь это связано с повышенной по сравнению с другими способами себестоимостью получаемого продукта и проблемы утилизации трудно перерабатываемых твердых отходов.

Одним из способов уменьшения выбросов и повышения эффективности производства аммиака является применение энерготехнологической схемы с парогазовым циклом, в котором в качестве рабочей теплоты используется не только теплота водяного пара, но и продуктов сгорания топлива.

Такая схема реализована в ряде производств химической технологии. К достоинствам этого химико-технологического процесса относятся: 1) использование теплоты промежуточных реакций для сжатия сырья (рекуперация энергии); 2) возможность организовать тщательную очистку отработанных газов [1].

Технологическая схема производства азотной кислоты под давлением 0,7 МПа.

Атмосферный воздух проходит тщательную очистку в двухступенчатом фильтре 1 (первая ступень фильтра выполнена из лавсановой ткани, вторая – из ткани Петрянова). Очищенный воздух сжимают двухступенчатым воздушным компрессором. В первой ступени 18 воздух сжимают до 0,35 МПа, при этом он нагревается до 165–175 °С за счет адиабатического сжатия. После охлаждения воздух направляют на вторую ступень сжатия 16, где его давление возрастает до 0,716 МПа.

Рисунок 2. -Схема производства азотной кислоты под давлением 0,7 МПа: 1 – фильтр воздуха; 2 – реактор каталитической очистки; 3 – топочное устройство; 4 – подогреватель метана; 5 – подогреватель аммиака; 6 – смеситель аммиака и воздуха; 7 – холодильник-конденсатор; 8 – сепаратор; 9 – абсорбционная колонна: 10 - продувочная колонна; 11 – подогреватель отходящих газов; 12 – подогреватель воздуха; 13– сосуд для окисления нитрозных газов; 14 – контактный аппарат; 15 – котел-утилизатор; 16, 18 – двухступенчатый турбокомпрессор: 17 – газовая турбина

Основной поток воздуха после сжатия нагревают в подогревателе воздуха 12 до 250–270 °С теплотой нитрозных газов и подают на смешение с аммиаком в смеситель 6.

Газообразный аммиак, полученный путем испарения жидкого аммиака, после очистки от влаги, масла и катализаторной пыли через подогреватель 5 при температуре 150 °С также направляют в смеситель 6. Смеситель совмещен в одном аппарате с поролитовым фильтром. После очистки аммиачно-воздушную смесь с содержанием NH3 не более 10% подают в контактный аппарат 14 на конверсию аммиака.

Конверсия аммиака протекает на платинородиевых сетках при температуре 870–900 °С, причем степень конверсии составляет 96%. Нитрозные газы при 890–910 °С поступают в котел-утилизатор 15, расположенный под контактным аппаратом. В котле за сжег охлаждения нитрозных газов до 170 °С происходит испарение химически очищенной деаэрированной воды, питающей котел-утилизатор; при этом получают пар с давлением 1,5 МПа и температурой 230 °С, который выдается потребителю.

После котла-утилизатора нитрозные газы поступают в окислитель нитрозных газов 13. Он представляет собой полый аппарат, в верхней части которого установлен фильтр из стекловолокна для улавливания платинового катализатора. Частично окисление нитрозных газов происходит уже в котле-утилизаторе (до 40%).

В окислителе 13 степень окисления возрастает до 85%. За счет реакции окисления нитрозные газы нагреваются до 300–335 °С. Эта теплота используется в подогревателе воздуха 12. Охлажденные в теплообменнике 12 нитрозные газы поступают для дальнейшего охлаждения в теплообменник 11, где происходит снижение их температуры до 150 ºС и нагрев выхлопных (хвостовых) газов до 110–125 °С. Затем нитрозные газы направляют в холодильник-конденсатор 7, охлаждаемый оборотной водой. При этом конденсируются водяные пары и образуется слабая азотная кислота. Нитрозные газы отделяют от сконденсировавшейся азотной кислоты в сепараторе 8, из которого азотную кислоту направляют в абсорбционную колонну 9 на 6–7-ю тарелку, а нитрозные газы – под нижнюю тарелку абсорбционной колонны. Сверху в колонну подают охлажденный паровой конденсат.

Образующаяся в верхней части колонны азотная кислота низкой концентрации перетекает на нижележащие тарелки. За счет поглощения оксидов азота концентрация кислоты постепенно увеличивается и на выходе достигает 55–58%, причем содержание растворенных в ней оксидов азота достигает ~1%. Поэтому кислота направляется в продувочную колонну 10, где подогретым воздухом из нее отдувают оксиды азота, и отбеленная азотная кислота поступает на склад. Воздух после продувочной колонны подается в нижнюю часть абсорбционной колонны 9.

Степень абсорбции оксидов азота достигает 99%. Выходящие из колонны хвостовые газы с содержанием оксидов азота до 0,11% при температуре 35 °С проходят подогреватель 11, где нагреваются до 110–145 °С и поступают в топочное устройство (камера сжигания) 3 установки каталитической очистки. Здесь газы нагреваются до температуры 390–450 °С за счет горения природного газа, подогретого предварительно в подогревателе 4, и направляются в реактор с двухслойным катализатором 2, где первым слоем служит оксид алюминия, с нанесенным на него палладием, вторым слоем – оксид алюминия. Очистку осуществляют при 760 °С.

Очищенные газы поступают в газовую турбину 17 при температуре 690–700 °С. Энергия, вырабатываемая турбиной за счет теплоты хвостовых газов, используется для привода турбокомпрессора 18. Затем газы направляют в котел-утилизатор и экономайзер (на схеме не показаны) и выбрасывают в атмосферу. Содержание оксидов азота в очищенных выхлопных газах составляет 0,005–0,008%, содержание СО2 – 0,23%.


Глава 2. Реализация технологии некаталитической очистки дымовых газов от оксидов азота на мусоросжигательном заводе

Процессы термического обезвреживания отходов сопровождаются образованием комплекса загрязняющих веществ, которые выбрасываются с дымовыми газами в атмосферу. В их числе оксиды азота (NOx), хлорид и фторид водорода, оксиды серы, зола, сажа, диоксины и фураны. В связи с этим, наряду с максимально полным использованием энергетического потенциала органической составляющей отходов возникает необходимость снижения до требуемых норм содержания опасных загрязняющих веществ в дымовых газах мусоросжигательных установок. С этой целью современные установки термического обезвреживания отходов должны быть оборудованы многоступенчатыми системами газоочистки. В соответствии с нормативами ЕС содержание NOx в дымовых газах мусоросжигательных установок не должно превышать 200 мг/м3 (в пересчете на NO2 при содержании 11 об. % О2 в сухом газе). Фактическая концентрация NOx достигает 600 мг/м3 и более. В мировой практике для очистки от NOx дымовых газов тепловых агрегатов, в том числе мусоросжигательных котлов, в основном используются технологии селективного каталитического восстановления (СКВ) или селективного некаталитического восстановления (СНКВ). Они основаны на восстановлении NOx аммиаком или карбамидом до молекулярного азота:

4NH3 + 4NO + O2 = 4N2 + 6H2O,

2CO(NH2)2 + 4NO + O2 = 4N2 + 2CO2 + 4H2O.

Принципиальное различие технологий СКВ и СНКВ заключается в том, что в процессах СКВ эффективное восстановление NOx происходит на поверхности катализатора при температуре 200–400 °С, а в процессах СНКВ — в газовой фазе при температуре 850–1 050 °С. Основное преимущество методов СНКВ — отсутствие необходимости использования катализатора и оборудования для его размещения. В связи с этим, по разным оценкам, стоимость строительства систем СНКВ примерно на порядок ниже, чем установок СКВ. В РГУ нефти и газа имени И. М. Губкина разработаны процессы некаталитической очистки с использованием аммиака и карбамида в качестве восстановителя оксидов азота. Системы очистки используются в тепловых агрегатах с объемом дымовых газов от 10 000 до 400 000 м3/ч. Эффективность очистки газов в промышленных условиях составляет от 75 до 90 %. Система некаталитической очистки газов с использованием в качестве восстановителя карбамида реализована на трех технологических линиях Московского мусоросжигательного завода № 2. Технологическая схема системы очистки приведена на рис. 1.

Рис. 1. Технологическая схема системы очистки дымовых газов от NOx на Московском мусоросжигательном заводе № 2

Твердый карбамид из хранилища с помощью винтового питателя поступает в емкость для приготовления раствора, куда одновременно подается химически очищенная вода. Приготовленный раствор карбамида по сигналу датчика уровнемера автоматически перекачивается в рабочие емкости, затем насосами-дозаторами подается в смесители. Полученная в смесителях восстановительная смесь посредством специальной распределительной системы вводится в расчетную зону топочной камеры мусоросжигательных котлов. Процесс восстановления NOх карбамидом в случаях перерасхода восстановителя, неэффективного смешения его с дымовыми газами или снижения температуры в зоне ввода восстановителя ниже оптимальных значений может сопровождаться проскоком непрореагировавшего аммиака. Содержание NH3 в дымовых газах регламентируется и в соответствии с европейскими нормами не должно превышать 10 мг/нм3. Для контроля содержания NOх и NH3 в дымовых газах используются автоматические газоанализаторы GM 31 фирмы SICK (Германия), которые позволяют определять содержание каждого компонента в режиме реального времени непосредственно в газовом потоке. Процесс очистки полностью автоматизирован и управляется с помощью системы АСУТП. Эффективность очистки газов составляет от 70 до 85 % в зависимости от режима работы котлов. Концентрация аммиака в очищенных газах не превышает 10 мг/нм3 и составляет, как правило, 3–5 мг/нм3.

Страницы: 1, 2, 3, 4

рефераты
Новости