рефераты рефераты
Главная страница > Курсовая работа: Производство экстракционной фосфорной кислоты  
Курсовая работа: Производство экстракционной фосфорной кислоты
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Производство экстракционной фосфорной кислоты

Более экономичный экстракционный метод получения фосфорной кислоты основан на разложении природных фосфатов кислотами (в основном серной, в меньшей степени азотной и незначительно соляной). Фосфорнокислые растворы, полученные разложением азотной кислотой, перерабатывают в комплексные удобрения, разложением соляной кислотой - в преципитат.

Сернокислотное разложение фосфатного сырья [в странах СНГ гл. обр. хибинского апатитового концентрата - основной метод получения экстракционной фосфорной кислоты, применяемой для производства концентрированных фосфорных и комплексных удобрений. Суть метода - извлечение (экстрагирование) P4O10 (обычно используют формулу P2O5) в виде H3PO4. По этому методу природные фосфаты обрабатывают H2SO4 с послед, фильтрованием полученной пульпы для отделения фосфорная кислота от осадка сульфата Ca. Часть выделенного основного фильтрата, а также весь фильтрат, полученный при промывке осадка на фильтре, возвращают в процесс экстрагирования (раствор разбавления) для обеспечения достаточной подвижности пульпы при ее перемешивании и транспортировке. Массовое соотношение между жидкой и твердой фазами от 1,7 :1 до 3,0:1.

Природные фосфаты разлагаются по схеме:

5031-2.jpg

Разложению кислотами подвергаются также сопутствующие примеси: кальцит, доломит, сидерит, нефелин, глауконит, каолин и др. минералы. Это приводит к увеличению расхода используемой кислоты, а также снижает извлечение P2O5 в целевой продукт вследствие образования нерастворимых фосфатов железа FeH3(PO4)2· 2,5H2O при концентрациях P2O5 выше 40% (содержание P4O10 обычно дается в пересчете на P2O5) и FePO4· 2H2O - при более низких концентрациях. Выделяющийся при разложении карбонатов СО2 образует в экстракторах стойкую пену; растворимые фосфаты Mg, Fe и Al снижают активность фосфорной кислоты, а также уменьшают содержание усвояемых форм P2O5 в удобрениях при последующей переработке фосфорной кислоты.

С учетом влияния примесей определены требования к фосфатному сырью, согласно которым природные фосфаты с повышенным содержанием соедержанием Fe, Al, Mg, карбонатов и органических веществ непригодны для производства фосфорной кислоты.

При разложении фосфатов серной кислотой наряду с фосфорной кислотой образуется практически нерастворимый сульфат кальция:

В случае смешения фосфата с серной кислотой средних концентраций образуется густая малоподвижная пульпа, не поддающаяся разделению. Поэтому разложение фосфата проводят в присутствии некоторого количества циркулирующей продукционной фосфорной кислоты и возвращаемых в процесс промывных растворов. В результате этого вначале фосфат реагирует в той или иной степени с фосфорной кислотой, содержащейся в растворе разбавления:

CaF(PO) + n HPO→5 Ca(HPO)+ (n-7) HPO+ HF

Затем образовавшийся Ca(HPO) взаимодействует с серной кислотой в присутствии фосфорной кислоты:

Ca(HPO)+HSO + m HPO→ CaSO+ (m+2) HPO

Сульфат кальция может быть выделен в форме дигидрата CaSO*2HO (гипса), полугидрата CaSO*0,5HO или водного CaSO(ангидрита). В зависимости от этого процесс можно вести дигидратным, полугидратным или ангидритным способами при разных температурах с получением фосфорной кислоты различной концентрации. Количество воды, вводимой в систему определяется не только степенью окисления выделившегося сульфата кальция, сколько отмывкой кислоты из осадка и необходимостью создания текучести пульпы и концентрации кислоты. .[1-3,6]

Глава 3. Аппаратурное оформление процесса

Аппараты для разложения и кристаллизации сульфата кальция

Разложение фосфата и кристаллизация сульфата кальция обычно протекает в одних и тех же аппаратах – экстракторах. Общий объем определяется необходимым временем пребывания в них реакционной массы (пульпы), а также производительностью системы.

Экстракторы – вертикальные цилиндрические или прямоугольные резервуары большой вместимости, снабженные пропеллерными или турбинными мешалками, вращающимися с частотой 400-600 об/мин. Они оборудованы вытяжными трубами для газов и паров.

Устойчивые металлические и неметаллические материалы защищают экстракторы, мешалки и трубопроводы от коррозии при действии горячих кислот и других примесей, а также от эрозии, т.е. истирания перемешиваемой пульпой. Так, поверхность стальных цилиндрических реакторов покрывают листовым свинцом или полиизобутиленом.

Крышки резервуаров-разъемные, что облегчает их монтаж. Защищают их гуммированием или футеровкой кислотоупорным материалом.

Газоходы изготовляют из черного металла и гуммируют. Наконечники труб для барботажа охлаждающего воздуха изготовляют из специальной стали. Трубопроводы и насосы для перекачки пульпы и фосфорной кислоты, лопасти мешалок выполняют из стали ЭИ – 943, а для разбавленных кислот – из сталей ЭИ – 448 и Х18Н10Т. Части трубопроводов, недоступные для чистки, изготавливают из полиэтилена, а также из армированной резины.

Батарейные (многореакторные) одно- и многомешальные экстракторы.

Батарейные экстракционные системы состоят из четырех последовательно расположенных реакторов с общим полевым объемом 320-340 кубических метров.

Цилиндрические реакторы диаметром 6950 и высотой 4000мм изготовлены из стали со слоем резины в 5мм и футерованы в полкирпича кислотоупорным силикатно-алюминиевыми в четверть – углеродистым материалом. Каждый реактор разделен на два отделения кирпичной перегородкой, имеющей в нижней части отверстия для движения пульпы. Экстракторы сообщаются между собой переточными желобами. В каждом отделении установлено по две двухъярусных мешалки с 12 лопастями каждая с частотой вращения 1500об/мин.

При верхних перетоках пульпы из одного одномешалкового аппарата в другой увеличивается вероятность проскока непрореагировавших частиц сырья через систему вдоль поверхности пульпы. При установке в аппаратах карманов нижним перетоком для пульпы в нижней их части осаждаются, а затем затвердевают частицы, что требует частичной чистки вертикальных перетоков.

Экстракторы для разложения фосфатного сырья

Фосфат разлагают в экстракторе с рабочим объемом 730 кубических метров, а пульпу отфильтровывают на карусельном вакуум-фильтре с поверхностью 80 квадратных метров. Продолжительность пребывания пульпы в экстракторе составляет 7-7,5 часов. Отвешенный автоматическими весами апатитовый концентрат поступает в первое отделение экстрактора. Серную кислоту с концентрацией 92,5%, разбавленную до 55-57% и охлажденную в графитовых холодильниках до 50-70º С, подают через распределительную коробку в первые три отделения экстрактора. Сюда направляют также раствор разбавления, содержащий 22-24% P2O5 и имеющий плотность 1,24-1,26 г\ см3. Его получают смешиванием части основного фильтрата со вторым фильтратом.

Подача в первые три секции охлажденных потоков серной кислоты, раствора разбавления и в первую секцию циркулирующей пульпы отводит тепло в сторону и поддерживает оптимальные температуры реакционной массы в экстракторе. Циркулирующая пульпа охлаждается в вакуум-испарителе при разрежении 76-84кПа и возвращается на экстракцию через десятую распределительную секцию экстрактора в количестве 1900-2000 т\ ч.

Вакуум-испаритель-стальной, гуммированный цилиндрический аппарат диаметром 4,5 и высотой 0,6 м с коническим футерованным днищем. Пульпу в него подают двумя вертикальными погруженными насосами, установленными в девятой секции-кармане экстрактора. Насосы изготовлены из нержавеющей стали, имеют высоту 3,5 и диаметр 1,0 м.

При выходе из испарителя охлажденная пульпа поступает по барометрическому трубопроводу в десятую распределительную секцию экстрактора. Отсюда часть пульпы откачивают погружным насосом на вакуум-фильтр. Количество пульпы, поступающей на фильтр, регулируют автоматическим индукционным расходомером, установленным на пульпопроводе и связанны с уровнем пульпы в экстракторе. Избыток пульпы из распределительного отделения перетекает в восьмую секцию экстрактора.

Одновременно с водой в паровую фазу вакуум-испарителя выделяются и соединения фтора, которые отмывают в промывной башне. Промывная башня имеет высоту 12,5 метров и диаметр 3,9 м. Кислоту разбрызгивают через форсунки, установленные в верхней части башни в четыре ряда, по семь форсунок в каждом ряду. Затем пары воды конденсируются в поверхностном конденсаторе. После этого паровоздушная смесь вакуумом-насосами выбрасывается в атмосферу. Окончательно газообразные фторсодержащие соединения из аппаратуры всей системы-из сборников фильтратов, экстрактора, распределительных коробок, после вакуумных насосов улавливают в абсорберах Вентури.

Страницы: 1, 2, 3, 4

рефераты
Новости