рефераты рефераты
Главная страница > Контрольная работа: Исследования химии в 20-21 веках  
Контрольная работа: Исследования химии в 20-21 веках
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: Исследования химии в 20-21 веках

После открытия рентгеновских лучей многие верили, что с помощью радиации можно вылечить все болезни и решить все проблемы. В то время люди не хотели видеть опасности радиоактивного облучения. Когда в 1895 г. Вильгельм Рентген (1845-1923) обнаружил новый вид облучения, волна восторга охватила весь цивилизованный мир. Открытие не только поколебало основы классической физики. Оно обещало неограниченные возможности - в медицине его тут же стали применять для диагностики, чуть позже - для лечения самых различных заболеваний. Рентгенодиагностика и рентгенотерапия спасли жизнь многим людям. Врачи, правда, через некоторое время стали ограничивать допустимое число рентгеновских снимков для одного пациента, но никто всерьез не обращал внимания на ожоги, возникающие после рентгена. Французский физик А. Беккерель, например, имел привычку носить в кармане брюк радиевый прибор. Через некоторое время он заметил воспаление на ноге. Чтобы убедиться, что прибор послужил причиной болезни, он переложил его в другой карман. Но даже появившаяся на другой ноге язва не смогла отрезвить ученого, находящегося, как и остальные, в эйфории от нового открытия. Радиоактивное излучение в то время рассматривали как универсальное целительное средство, эликсир жизни. Радий оказался эффективен при лечении доброкачественных опухолей, и «популярность» его резко возросла. В свободной продаже появились радиевые подушки, радиоактивная зубная паста и косметика.

Однако вскоре появились первые тревожные сигналы. В 1911г. было обнаружено, что берлинские врачи, имеющие дело с радиацией, часто заболевают лейкемией. Позднее немецкий физик Макс фон Лауэ (1879-1960) экспериментально доказал, что радиоактивное излучение неблагоприятно влияет на живые организмы, а в 1925-1927 гг. стало известно, что под воздействием излучения возникают изменения наследственного вещества - мутации.

Полное отрезвление наступило после атомной бомбардировки Хиросимы и Нагасаки. Почти все оставшиеся в живых после ядерного взрыва получили большую дозу облучения и умерли от рака, а их дети унаследовали некоторые генетические нарушения, вызванные радиацией. Впервые об этом стали открыто говорить в 1950г., когда число больных лейкемией среди пострадавших от атомных взрывов стало катастрофически расти. После Чернобыльской аварии недоверие к радиации переросло в настоящую ядерную истерию.

Таким образом, если в начале XX в. люди упорно не хотели видеть вреда от облучения, то в конце его - стали бояться радиации даже тогда, когда она не представляет реальной опасности. Причина обоих явлений одна - человеческое невежество. Можно только надеяться, что в будущем человек научится придерживаться золотой середины и обращать знания о природных явлениях себе во благо.


4. ПЕРСПЕКТИВНЫЕ ХИМИЧЕСКИЕ ПРОЦЕССЫ

 

4.1 Плазмохимические процессы

Плазмохимические процессы протекают в слабоионизированной, или низкотемпературной, плазме при температуре от 1000 до 10000°С. Ионизированные и неионизированные частицы плазмы, находящиеся в возбужденном состоянии, в результате столкновений легко вступают в химическую реакцию. Производительность метанового плазмохимического реактора - плазмотрона сравнительно небольших размеров (длиной 65 см и диаметром 15 см) - составляет 75 т ацетилена в сутки. По производительности он не уступает огромному заводу. В нем при температуре 3000-3500 °С за 0,0001с около 80% метана превращается в ацетилен. Коэффициент полезного потребления энергии - 90-95 %, а энергозатраты - менее 3 кВт/ч на 1 кг ацетилена. В то же время в традиционном паровом реакторе пиролиза метана энергозатраты вдвое больше.

В последнее время разработан эффективный способ связывания атмосферного азота посредством плазмохимического синтеза оксида азота, который гораздо экономичнее традиционного аммиачного способа. Создана плазмохимическая технология производства мелкодисперсных порошков - основного сырья для порошковой металлургии. Разработаны плазмохимические методы синтеза карбидов, нитридов, карбонитридов таких металлов, как титан, цирконий, ванадий, ниобий и молибден, при сравнительно небольших энергозатратах - 1-2 кВт/ч на 1 кг готовой продукции.

В 70-х годах XX в. созданы плазмохимические сталеплавильные печи, производящие высококачественный металл. Ионно-плазменная обработка рабочей поверхности инструментов позволяет повысить их износостойкость в несколько раз. В результате подобной обработки можно сформировать, например, пористый рельеф на ровной поверхности.

Ионно-плазменное напыление в вакууме широко применяется для формирования элементов современных интегральных схем.

Методом плазменного напыления можно нанести пористое покрытие со сложной микроструктурой, способствующее срастанию эндо - протеза с костной тканью. С помощью пористых покрытий можно увеличить эффективность катализатора, повысить коэффициент теплоотдачи и т.д.

Плазмохимия позволяет синтезировать металлобетон, в котором в качестве связующих материалов используют сталь, чугун и алюминий. Металлобетон образуется при сплавлении частиц горной породы с металлом и по прочности превосходит обычный бетон: на сжатие - в 10 раз и на растяжение - в 100 раз. В нашей стране разработан плазмохимический способ превращения угля в жидкое топливо без применения высоких давлений и выброса золы и серы. Кроме основного химического продукта - синтез газа, извлекаемого из органических соединений каменного или бурого угля, этот способ позволяет получить из неорганических включений угля ценные соединения: технический кремний, карбосилиций, ферросилиций, адсорбенты для очистки воды и т.п., - которые при других способах переработки угля выбрасываются в виде зольных отходов.

 

4.2 Самораспространяющийся высокотемпературный синтез

Для производства многих тугоплавких и керамических материалов применяется технология порошковой металлургии, включающая операции прессования при высоком давлении и спекания полученной заготовки при относительно высокой температуре 1200-2000 °С. Однако эта технология довольно энергоемкая: создание высоких температур и давления требует больших энергозатрат. Гораздо проще и экономичнее предложенная сравнительно недавно технология самораспространяющегося высокотемпературного синтеза, основанная на реакции горения одного металла в другом или металла в азоте, углероде, кремнии и т.п., т.е. теплового процесса горения в твердых телах.

Самораспространяющийся высокотемпературный синтез не требует трудоемких процессов и громоздких печей и отличается высокой технологичностью. Он легко поддается автоматизации. Промышленной установкой, производящей многотоннажную продукцию, может управлять всего лишь один оператор.

 

4.3 Химические реакции при высоких давлениях

Химические превращения веществ при давлениях выше 100 атм. относятся к химии высоких давлений, а при давлениях выше 1000 атм. - химии сверхвысоких давлений. Идея активизации химических реакций при повышении давления возникла сравнительно давно: еще в 1917 г. аммиак производился при давлении 300 атм. и температуре 600 °С.

В последнее время во многих промышленных установках давление достигает не менее 5000 атм. Проводятся испытания при давлении выше 600000 атм., которое создается ударной волной при обычном взрыве. Ядерные взрывы сопровождаются более высоким давлением.

Высокое давление ведет к существенному изменению физических и химических свойств вещества. Например, сталь при давлении 12000 атм. становится ковкой и гибкой, а при 20000 атм. металл эластичен, как каучук. При давлении 400000 атм. диэлектрическая сера приобретает электропроводящие свойства. При высоких температурах и давлениях обычная вода химически активна, и растворимость солей в ней повышается в 3-4 раза. При сверхвысоком давлении многие вещества переходят в металлическое состояние. Таким необычным свойством обладает даже газообразный водород - его металлическое состояние наблюдалось в 1973 г. при давлении 2,8 млн. атм. С применением твердого водорода в качестве ракетного топлива полезный груз космического корабля увеличивается с 10 до 60%.


4.4 Синтез алмазов

Одно из важнейших достижений химии сверхвысоких давлений - синтез алмазов. Первые искусственные алмазы синтезированы в 1954 г. (после длительной, пятидесятилетней поисковой работы) почти одновременно в США и Швеции. Синтез осуществлялся при давлении 50 000 атм. и температуре 2000 °С. Такие алмазы стоили в 30 раз дороже природных, но уже к началу 60-х годов XX в. их стоимость существенно снизилась. В последние десятилетия ежегодно производятся тонны синтетических алмазов, по своим свойствам незначительно отличающихся от природных. Различия между синтетическими и природными алмазами можно определить только с помощью точных физических приборов. Доля искусственных алмазов на мировом рынке превышает 75% от объема всей алмазной продукции.

В недалеком прошлом по производству и потреблению алмазов первое место в мире занимал бывший СССР. Более 8000 предприятий в нашей стране пользовались алмазным инструментом, причем производилось более 2500 видов таких инструментов - от крошечных волочильных устройств до громадных режущих дисков для разрезания крупных каменных блоков.

Промышленный синтез алмазов основан на превращении графита в реакторе высокого давления при наличии различных катализаторов: металлического никеля, сложной смеси железа, никеля и хрома, и др. Кристаллизация алмазов происходит при давлении 50000 - 60000 атм. и температуре 1400- 1600 °С.

Обычно в реакторах высокого давления образуются алмазные кристаллы размером не более 1 мм. Такие мелкие камни вполне пригодны для промышленных целей, но из них трудно изготовить украшения. Сравнительно недавно разработана новая технология, позволяющая выращивать кристаллы алмаза размером до 6 мм. Однако синтез алмазов, которые можно было бы превратить в крупные бриллианты, так сложен и дорог, что синтезированные бриллианты не могут конкурировать с природными: кристалл искусственного алмаза массой 50 - 60 г (250 - 300 карат) стоит столько же, сколько 1 т золота.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8

рефераты
Новости