рефераты рефераты
Главная страница > Контрольная работа: Абсорбция. Предотвращение источников техногенной чрезвычайной ситуации  
Контрольная работа: Абсорбция. Предотвращение источников техногенной чрезвычайной ситуации
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: Абсорбция. Предотвращение источников техногенной чрезвычайной ситуации

3.3 Определение возможности образования в горючей среде (или внесения в нее) источников зажигания, инициирования взрыва

3.3.1 Источники зажигания от открытого огня, искр и нагретых поверхностей

В условиях производства для данного технологического процесса характерными могут быть следующие источники зажигания:

-  подогреватель насыщенного абсорбента;

-  факелы и паяльные лампы, используемые для отогрева различных коммуникаций;

-  малокалорийные источники зажигания (тлеющий окурок).

-  высоконагретые продукты и поверхность конструкции;

3.3.2 Источники зажигания от теплового проявления механической энергии

В производственных условиях наиболее распространенными источниками зажигания от теплового проявления механической энергии являются:

-  удары твердых тел с образованием искр;

-  поверхностное трение тел;

Удары твердых тел.

При определенной силе удара некоторых твердых тел друг о друга могут образовываться искры, которые называются искрами удара или трения. Искры представляют собой нагретые до высокой температуры частицы металла или камня размером от 0.1 до 0.5 мм. и более. Температура искры достигает в среднем 1550ОС. Несмотря на высокую температуру искры ее воспламеняющая способность сравнительно невысока, т.к. из-за малых размеров (массы) запас тепловой энергии искры очень мал. Искры способны воспламенить парогазовоздушные смеси, имеющие малый период индукции, небольшую минимальную энергию зажигания. Воспламеняющая способность искры, находящаяся в покое, выше летящей, т.к. неподвижная искра медленней охлаждается, она отдает тепло одному и тому же объему горючей смеси, а следовательно нагреть до более высокой температуры.

В условиях производства наиболее часто искры образуются при:

-  работе ударным инструментом (молотки, зубила, ломы и т.д.);

-  удары алюминиевых тел о стальную окисленную поверхность

,

Искры, образующиеся при попадании в машины металла или камней.

Образование искр такого происхождения возможно в:

-  аппаратах центробежного действия (насосы, компрессоры).

Искры, образующиеся при ударах подвижных механизмов машин об их неподвижные части.

Искры такого происхождения возникают при:

-  - неправильной регулировки зазоров;

-  - изнашивании подшипников;

-  - перекосах оборудования;

Источники зажигания по причине тепла трения.

Всякое перемещение соприкасающихся друг с другом тел требует затрат энергии на преодоление работы сил трения. Эта энергия в основном превращается в теплоту.

При нормальных условиях выделяющееся тепло своевременно отводится и этим обеспечивается нормальные температурный режим.

Причина роста температуры:

-  увеличение количества выделяющегося тепла;

-  уменьшение теплоотвода.

По этим причинам возможен перегрев подшипников.

Причины перегрева подшипников:

-  отсутствие смазки;

-  чрезмерная затяжка;

-  перекосы;

-  перегрузка валов;

-  загрязнение поверхности отложениями, уменьшающими теплоотвод.

3.3.3 Источники зажигания от теплового проявления электрической энергии

Пожары от электроустановок могут происходить как при их нормальной работе, так и при неисправностях. При нормальной работе - неправильный выбор по условиям работы (без учета категории и группы взрывоопасной смеси и характера окружающей среды) электроустановок. При аварийных режимах вызванных несоответствием электрооборудования номинальным токовым нагрузкам, перегрузкой электрических и сетей и электродвигателей, короткими замыканиями и большими переходными сопротивлениями.

Причинами пожаров так же могут быть разряды статического и атмосферного электричества.

3.3 Определение условий, способствующих распространению пожара

а) скопление значительного количества горючих веществ и материалов в помещениях и на открытых площадках, превышающих установленные нормы;

б) наличие развитой системы вентиляции, а также отсутствие или неисправность огнезадерживающих и обратных клапанов, шиберов и заслонок в системах вентиляции;

в) наличие технологических коммуникаций (производственная канализация, технологические трубопроводы, транспортерные линии, пневмотранспорт);

г) аварии аппаратов и трубопроводов, сопровождающиеся разливом ЛВЖ, и загазованностью помещений, установок;

д) наличие незащищенных технологических и других проемов в перекрытиях, стенах, перегородках;

е) отсутствие или неисправность:

-  автоматических установок обнаружения и тушения пожаров;

-  средств связи;

-  противопожарного водоснабжения;

-  аварийного слива жидкостей из производственного оборудования;

-  первичных средств пожаротушения;

ж) появление на пожаре внезапных факторов (взрыв аппарата, выбросы, обрушение конструкций и т.д.);

з) несоответствие противопожарных расстояний.

По производственным коммуникациям пожар будет распространятся в тех случаях, если внутри трубопроводов, воздуховодов, траншей, туннелей или лотков образовалась горючая среда, когда трубопроводы с этой горючей средой работают неполным сечением, если в системе заводской канализации на поверхности воды имеется слой горючей жидкости, когда имеются горючие отложения на поверхности труб, каналов и воздуховодов, если в технологической системе находятся газы, газовые смеси или жидкости, способные разлагаться с воспламенением под воздействием высокой температуры или давления. Огонь может также распространяться по транспортерам, элеваторам и другим транспортным устройствам, через не защищенные технологические проёмы в стенах, перегородках и перекрытиях.


4. Определение параметров поражающих факторов источников техногенной ЧС

4.1 Определение относительного энергетического потенциала блока

Относительный энергетический потенциал характеризует запас энергии в технологическом блоке, который может быть реализован при взрыве определяется по формуле

  

где:

E - общий энергетический потенциал (кДж).

Условная масса горючих веществ определяется как отношение общего энергетического потенциала к единой теплоте сгорания большинства углеводородов по формуле (14).

,

Категория взрывоопасности блока II.

4.2 Определение параметров поражающих факторов источников техногенной чрезвычайной ситуации для десорбера 5

Поражающий фактор источника техногенной ЧС - составляющая опасного происшествия, характеризуемая физическими, химическими и биологическими действиями или проявлениями, которые определяются или выражаются соответствующими параметрами

При оценке поражающих воздействий факторов источников техногенной чрезвычайной ситуации определяют:

а) массу веществ вышедших при аварии;

б) площадь аварийного разлива жидкостей;

в) размеры зон ограниченных НКПРП;

г) избыточное давление взрыва;

д) величину плотности теплового потока;

е) размеры зон возможных разрушений и травмирования персонала;

ж) глубину зоны заражения вредных веществ;

з) продолжительность поражающего действия вредных веществ.

В виду того, что оборудование располагается на открытой площадке, определяем горизонтальные размеры зон, ограничивающие паровоздушные смеси с концентрацией горючего выше НКПР возле десорбера:

  (1)

                         (2)

где

m п - масса паров ЛВЖ, поступивших в открытое пространство за время полного испарения, но не более 3600 с, кг;

rГ.П. - плотность паров ЛВЖ при расчетной температуре и атмосферном давлении, кг×м-3;

Рн - давление насыщенных паров ЛВЖ при расчетной температуре, кПа;

К - коэффициент, принимаемый равным К = Т/3600 для ЛВЖ;

Т - продолжительность поступления паров ЛВЖ в открытое пространство, с;

Снкпр - нижний концентрационный предел распространения пламени паров ЛВЖ, % (об.);

М - молярная масса, кг×кмоль-1;

V0 - мольный объем, равный 22,413 м3×кмоль-1;

tр - расчетная температура, °С.

        (3)

где А, В, СА - коэффициенты Антуанна (определяются по справочной

литературе );

 tж – температура жидкости.

Т – время испарения жидкости, с.

Длительность испарения жидкости принимается равной  времени ее полного испарения, но не более 3600 с.

Массу паров ЛВЖ принимаем равной массе этанола в десорбере, учитывая, что весь этанол находится в паровой фазе и занимает 80% объема десорбера.

Страницы: 1, 2, 3, 4, 5, 6

рефераты
Новости