рефераты рефераты
Главная страница > Реферат: Электрический ток в вакууме. Электровакуумные приборы  
Реферат: Электрический ток в вакууме. Электровакуумные приборы
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Электрический ток в вакууме. Электровакуумные приборы

Рис.4

 Современный диод состоит из стеклянного или металлического баллона (рис.4), из которого тщательно откачивается воздух. В баллон впаяны два электрода, один из которых (катод) изготовляют в виде нити из тугоплавкого металла, обычно вольфрама, которая может разогреваться от источника тока для создания электронного «облачка» в баллоне. Анод диода чаще всего имеет форму цилиндра, внутри которого по оси расположен накаливаемый катод.

 Рассмотренный  нами катод – катод прямого накала – применятся редко. Наиболее распространены катоды косвенного подогрева. Они представляют собой    полупроводниковый слой, нанесённый на керамическую трубочку. Нагреваются эти катоды с помощью миниатюрной электрической печки (рис.5) – подогревателя. На

(рис.6) показано схематическое изображение диода с катодом прямого (а) и косвенного (б) накала.

                              

а)                       б)

Рис.5                              Рис.6    

Познакомимся с основными свойствами диода. Для этого составим электрическую цепь из диода, источников напряжения Ua  и  Uk  и гальванометра (рис.7).  Коммутатор К2  позволяет создавать между анодом и катодом напряжение (анодное) разной полярности. При замыкании переключателя К2 в положение 1 на анод подается положительный относительно катода потенциал, а при замыкании переключателя К2 в положение 2 – отрицательный.

Рис.7

Если замкнём переключатель К2 в положение 1, то есть сообщим аноду положительный относительно катода потенциал, но не замкнём переключатель К1 (не будем разогревать катод), то тока в цепи не будет даже при больших анодных напряжениях Uа.  И это понятно. Температура обоих электродов равна комнатной, термоэлектронная эмиссия катода анода ничтожно мала, и в пространстве между анодом и катодом практически отсутствуют заряженные частицы, движение которых в электрическом поле могло бы создать электрический ток.

Если переключатель К1 замкнуть и разогреть катод, то даже при анодном напряжении Ua=0 в цепи анода будет протекать незначительной силы  ток I0. Возникновение этого тока можно объяснить так.  При высокой температуре катода большой будет и эмиссия электронов из него. Наиболее быстрые электроны, вылетевшие из катода, долетают до анода, создавая в цепи анодный ток. Если аноду сообщить небольшой отрицательный потенциал относительно катода (переключатель К2 в положении 2), то сила анодного тока уменьшается, поскольку в этом случае электроны должны преодолевать тормозящее поле между анодом и катодом. При определённом анодном напряжении U1 даже наиболее быстрые электроны не могут преодолеть тормозящее поле и сила анодного тока равна нулю.Сообщим теперь аноду положительный относительно катода потенциал (переключатель К2 в положении 1). В этом случае электрическое поле между анодом и катодом содействует движению электронов к аноду, но при этом нарушается динамическое равновесие между вылетом из катода и возвращением в него электронов и эмиссия усиливается. Зависимость между силой тока в диоде и анодным напряжением можно изобразить графически

                                      Ia

                                      Iн   -----------------------------------


Рис.8                          U1   а        U2         U3   Uн   Uа                                                                                                                                                                                      

Кривая, показывающая зависимость силы тока в диоде от анодного напряжения, называется вольтамперной характеристикой диода. По мере увеличения анодного напряжения всё большее число вылетающих из катода электронов увлекается электрическим полем и сила анодного тока резко возрастает до тех пор, пока напряжение не достигнет такого значения Uн, при котором все вылетающие из катода за единицу времени электроны будут перемещаться полем к аноду. Сила анодного  тока достигает максимального значения Iн, которое называют силой тока насыщения диода, и дальнейшее увеличение анодного напряжения не ведёт к увеличению силы анодного тока. Анодное напряжение Uн  получило название напряжения насыщения.

При напряжении  Uа  = 0 сила тока Iо очень мала, значительно меньше силы тока насыщения, поэтому считают, что вольтамперная характеристика проходит через начало координат, то есть пренебрегают силой тока Iо: тогда при Ua = 0 и I0 = 0.

Обратите внимание, что вольтамперная характеристика диода нелинейная, как это имеет место в случае металлических проводников. Сопротивление диода, найденное как частное от деления анодного напряжения на силу тока, при разных анодных напряжениях будет разным и не может служить параметром диода. Таким образом, электронная лампа является примером проводника, для которого не выполняется закон Ома.

Поскольку накаливаемый диод лампы испускает электроны, а не положительные ионы, диод проводит ток только в случае сообщения аноду лампы положительного относительно катода потенциала. Если же аноду сообщить отрицательный потенциал, то термоэлектроны будут отталкиваться от отрицательно заряженного анода и притягиваться к положительно заряженному катоду и ток через лампу не идет – лампа запирается. Это означает, что лампа обладает односторонней проводимостью. Односторонняя проводимость диода широко используется в технике для выпрямления переменного тока.

Вакуумный триод

Для улучшения действия электронной лампы в нее вводят до­полнительные сетки. Лампу с двумя сетками называют тетродом (т. е. четырехэлектродной), с тремя — пентодом (пятиэлектродной). Появление электронных ламп разнообразных устройств, основанных на их применении, сыграли огромную роль в развитии радио. Триод также применяют, как генератор электрических колебаний. Потоком электронов, движущихся в электронной лампе от катода к аноду можно управлять с помощью электрических и магнитных полей. Простейшим электровакуумным прибором, в котором осуществляется управление потоком электронов с помощью электрического поля, является триод. Баллон, анод и катод вакуумного триода имеют такую же конструкцию, как и у диода, однако на пути электронов от катода к аноду в триоде располагается третий электрод, называемый сеткой. Обычно сетка – это спираль из нескольких витков тонкой проволоки  вокруг катода

                   Рис.9                               Рис.10

Если на сетку подаётся положительный потенциал относительно катода (рис.9), то значительная часть электронов пролетает от катода к аноду, и в цепи анода существует электрический ток. При подаче на сетку отрицательного потенциала относительно катода электрическое поле между сеткой и катодом препятствует движению электронов от катода к аноду (рис.10), анодный ток убывает. Таким образом, изменяя напряжение между сеткой и катодом, можно регулировать силу тока в цепи анода, что и послужило причиной названия сетки управляющей.

Рис. 11. Схема включения триода

Условное графическое обозначение триода показано на рис.11. Промышленность выпускает широкий ассортимент самых разных триодов, а также двойных триодов с общим и раздельными катодами, которые применялись в разной радиоаппаратуре, еще находясь в эксплуатации.


К параметрам триода относятся: внутреннее сопротивление – отношение приращения анодного напряжения к приращению анодного тока, коэффициент усиления – отношение приращения анодного напряжения к приращению напряжения на сетке, крутизна характеристики анодного тока – отношение приращения анодного тока к приращению напряжения на сетке:

Внутреннее сопротивление Ri измеряется в кОм, крутизна характеристики S – в А/В, коэффициент усиления μ – величина безразмерная.

К предельным  эксплуатационным параметрам триодов относится те же параметры, что и к диодам: минимальное и максимальное напряжения накала, наибольшее допустимо обратное напряжение анода, наибольшее напряжение между катодом и подогревателем, наибольший средний анодный ток, предельная мощность, рассеиваемая анодная, а также дополнительные параметры (наибольшее отрицательное напряжение на сетке и наибольшее сопротивление в цепи сетки). Необходимость ограничения сопротивления в цепи сетки связана с тем, что сетка обычно располагается очень близко к катоду и может им нагреваться. При этом возможно появление термоэлектронной эмиссии с сетки, которая приводит к обратному сеточному току. Хотя эта эмиссия и обратный ток очень малы, но при большем сопротивлении в цепи сетки ток создает на нем ощутимое падение напряжения, которое может нарушить нормальный режим лампы.

Страницы: 1, 2, 3, 4

рефераты
Новости