рефераты рефераты
Главная страница > Реферат: Реставрация каменных зданий  
Реферат: Реставрация каменных зданий
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Реставрация каменных зданий

Еще сложнее обстоит дело с усадочными явлениями. Кладка, выложенная «а известко­вом растворе, дает значительную усадку в про­цессе твердения раствора, доходящую, в зави­симости от толщины швов и жирности раство­ра, до 2—4% высоты кладки. Строителям хо­рошо были знакомы эти свойства известковых растворов, для чего они давали соответствую­щий подъем сводам и завышали высоту стен. Интересным примером служат арки XVII в., выложенные дополнительно для поддержания старых арок (XV в.) между столбами Успен­ского собора Московского Кремля. Основные арки, несущие своды, уже получили усадку к XVII в. Новые же арки отошли от первых у верха на 5—6 см. Эта величина легко под­тверждается расчетом: при длине арок (по кривой) около 8 м, при 2%-ной усадке их дли­на сократилась на 16 см, а радиус уменьшил­ся на 16/11^5 см. Сейчас эти арки никакой подпружной опоры не создают.

Серьезное значение при выборе состава раствора имеет и его паропроницаемость, тем более в штукатурке при массивных стенах. В 1911 г. церковь Спаса на Нередице была ош­тукатурена снаружи широко применяемым в то время цементным раствором. Начались рез­кое ухудшение влажностного режима стен и порча фресок. Через 3 года штукатурку приш­лось срубить. Древние кладки имеют весьма высокий коэффициент паропроницаемости, до­стигающий 2,5 и более единиц, который нужно выдерживать. В каждом конкретном случае должны отрабатываться специфические свой­ства применяемых материалов, их смесей, до­бавок и прочее.

Особенно серьезное значение имеет выбор материалов, применяемых при реставрации по­верхностных слоев кладки. Хорошее сцепление новых растворов с основной кладкой обеспечи­вается при минимальной усадке новых мате­риалов. Это достигается применением более тощих, менее усадочных растворов. (Значи­тельно повышают сцепление растворов с древ­ней кладкой добавки новейших полимерных материалов, например эмульсии ПВА, но при этом могут увеличиться явления усадки и по­низиться паропроницаемость новых раство­ров).

Большое значение имеет также и коэффи­циент температурного расширения материалов. Для жирной цементной штукатурки этот коэф­фициент почти в два раза больше, чем для кладки на известковом растворе. Естественно, что такая штукатурка сравнительно быстро отделяется от древней кладки не только из-за закупорки за ней влаги, но также в результате разницы в изменении .размеров под влиянием нагрева и охлаждения. Близость физико-механических свойств старых и вновь приме­няемых материалов — залог успеха реставра­ционных работ. Еще один порок цемента за­ключается в том, что выделяющаяся при гид­ратации цемента свободная известь имеет вид кристаллических прорастаний, а не тонкоди­сперсных частиц. Эти кристаллы, растворяясь, иногда выходят потеками, вызывая образова­ние водорастворимой пленки («емчуги») на поверхности кладки.

Отмеченное не исключает, однако, возмож­ности применения цемента в реставрации па­мятников, не имеющих живописи. Нужно лишь знать его недостатки и уметь создавать опти­мальные составы растворов, нейтрализуя не­достатки отдельных компонентов.

Следует также отметить, что ставшая час­той обработка фасадов гидрофобизирующими составами может оказаться порочной, если ув­лажненная кладка стен содержит значитель­ное количество сернокислых соединений. Кри­сталлизуясь под гидрофобизированным слоем, эти соли будут отторгать непроницаемый для жидкости слой.

Долговечность конструкций после прове­денной реставрации памятника обеспечивает­ся рациональным применением материалов со­ответственной прочности и морозостойкости, правильной технологией работ и тщательней­шим выполнением всех деталей вводимых кон­струкций. Особенное внимание должно быть обращено на последовательный отвод воды и на применение достаточно стойких    конструкций взамен разрушенных. Например, для водо­метов, для открытых лестниц и т. п. должен, согласно СНиП, применяться материал (ка­мень, бетон или кирпич), выдерживающий не менее 50 циклов на замораживание. Также должно быть обращено внимание на создание нормального микроклимата в здании, на отвод поверхностных вод, на затененность здания из­лишней растительностью и на нормальную экс­плуатацию объекта.

Исследования последних лет показали це­лесообразность небольшого подогрева в весен­ний период массивных каменных неотапливае­мых зданий для того, чтобы избежать увлаж­нения охлажденной кладки выпадающим кон­денсатом влаги воздуха. К подобным выводам пришел и крупнейший итальянский специалист в этой области Дж. Массари.

Укрепление оснований и фундаментов объекта

Самые серьезные повреждения древнего здания обычно связаны с нарушением его ста­тического равновесия. Из-за неравномерной осадки возникают трещины в стенах и сводах, перекосы проемов и разрушение их перемы­чек, наклоны отдельных стен или всего здания в целом и т. п. (рис. 104, 105). Иногда это объ­ясняется неудачным в свое время выбором места для постройки и недоучетом отрицатель­ных свойств грунтов в целом или их части (Ус­пенский собор в Рязани). Иногда это зависит от неудачной конструкции фундамента, при­ведшей к разрушениям (выкладка на глине и т. п.), или от недостаточной, не отвечающей расчетам ширины. Вопросы укрепления клад­ки фундаментов, уширения площади их подошвы, подводки новых фундаментов уже в доста­точной мере освещены в специальной литера­туре [10; 52, с. 136—143 и др.]. Вместе с тем неравномерная осадка фундаментов часто объ­ясняется ухудшившимся состоянием грунтов: уменьшением их несущей способности в ре­зультате замачивания (просадка лессовых грунтов), гниением органической части насып­ных грунтов, гниением деревянных свай, вы­мыванием мелких фракций песчаных грунтов при изменении режима грунтовых вод или уст­ройством вблизи здания подземных выработок. В данном разделе вниманию реставраторов предлагаются прогрессивные методы укрепле­ния оснований, получившие распространение за последние 10—15 лет.

Рязань  Успенский собор. Схема последовательности подводки фундаментов. 1 – линия шурфов;2 – участок ранней подводки фундаментов; 3 – проемы, закладываемые во время подводки фундаментов;  4 – участки подводки фундаментов.

Химическое закрепление грунтов основания

Как показал многолетний опыт строитель­ства, в целях прекращения деформаций для усиления основания архитектурного памятника целесообразно применять химическое закреп­ление грунтов под фундаментами. Советская архитектурная практика в настоящее время располагает разными способами такого хими­ческого закрепления.

Успешному применению разработанных глубинных способов закрепления в значитель­ной степени способствовало установление опре­деленных границ применения той или иной ре­цептуры закрепляющих растворов в грунтах с определенным коэффициентом фильтрации. Здесь приводится таблица, в которой указаны химические реагенты, используемые в различ­ных рецептурах, границы применения этих рецептур, характер геля и закрепления По горизонтали в таблице приве­дены наименования грунтов и величина коэф­фициента фильтрации. При этом крупнозерни­стые, более проницаемые грунты расположены слева направо с постепенным уменьшением их водопроницаемости. Исходные материалы для закрепления грунтов представлены цементом, силикатом и смолами, а для введения химиче­ских растворов в глинистые грунты использу­ется  постоянный  электрический  ток.

Архангельск. Колокольня Боровско-Успенской церкви. Схема выпрямления, выполненная   П. Н. Покрышкиньш в начале XX  в. Детали  нижнего окна после выпрямления (а) и до выпрямления (б)

Классификация физико-химических способов закре­пления грунтов, разработанная проф. Б. А. Ржаницыным

Для хорошо проницаемых грунтов разра­ботана рецептура цементно-глинистых раство­ров. Эти растворы по сравнению с цементно-песчаными имеют преимущества, они легче прокачиваются насосами и меньше их изна­шивают, при продвижении в трещинах и по­рах грунтов двигаются как тиксотропные с тупым углом и дают 100%-ный выход водо­непроницаемого камня. Эти растворы целе­сообразно применять в песчано-гравелистых грунтах с коэффициентом фильтрации от 80 до 500 м/сут.

Учитывая, что современный крупный по­мол цемента не позволяет цементным части­цам проникать в поры песков, для закрепле­ния этих грунтов применяется раствор, со­стоящий из силиката и глины. При этом в зависимости от качества используемой глины границы применимости характеризуются грун­тами с коэффициентом фильтрации от 60 до 100 м/сут при использовании местных глин и от 20 до 50 м/сут при применении бентонито­вых глин. Для прочного закрепления песча­ных грунтов разработан способ, основанный на поочередном нагнетании в песчаный грунт двух растворов: силиката натрия и хлористо­го натрия. Б результате химической реакции между этими растворами в порах грунта вы­деляется гель кремниевой кислоты, грунт бы­стро закрепляется, становится водонепроница­емым с прочностью 20—60 кгс/см2, а само закрепление  долговечно.

Для  мелкозернистых    песчаных    грунтов, имеющих коэффициент фильтрации от 0,5 до 5 м/сут, разработан способ однорастворной силикатизации с помощью фосфорной кисло­ты, серной кислоты и сернокислого алюминия, алюмината натрия и кремнефтористоводородной кислоты. При этом способ однораствор­ной силикатизации с помощью кремнефтори-стоводородной кислоты наиболее эффективен и дает значительную прочность закрепления порядка 20—50 кгс/см2. Кроме того, он поз­воляет закреплять мелкие песчаные грунты с любым содержанием гумуса. Эта категория грунтов может быть также успешно закрепле­на разработанным в последние годы спосо­бом газовой силикатизации, основанным на поочередном нагнетании в грунт силиката натрия и углекислого газа по схеме; СО2 — силикат натрия — СО2. Грунт при этом при­обретает прочность, равную 8—15 кгс/см2.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

рефераты
Новости