Курсовая работа: Технология строительства промышленного здания с использованием железобетонных конструкций
Расчёт прочности сечения
колонны должен выполнятся на 4 комбинации усилий, а расчётное сечение
симметричной арматуры должно приниматься наибольшим. В целях упрощения
количества расчётов, расчет прочности сечения колонны можно производить по
наиболее опасному сочетанию нагрузок. В данном случае расчет производим по
первому сочетанию нагрузок (Mmax ).
Расчётное сопротивление Rb
принимаем с коэффициентом γb2 = 1,1, т.к. в комбинации включены
постоянная, снеговая, крановая и ветровая нагрузки.
Расчёт в плоскости изгиба
Расчётная длина
надкрановой части колонны в плоскости изгиба по табл. XIII.1 [1]; при учёте
крановых нагрузок l0 = 2H2; без учёта крановых нагрузок l0=2,5H2. В данном
случае l0 =2·5,7 =11,4 м.
Определяем гибкость
надкрановой части колонны по формуле:
λ=l0/i, (3.2.1)
где i – радиус инерции
сечения, м;

Так как минимальная
гибкость в плоскости изгиба λ=l0/i =1140/17,32 =48,5>14, то необходимо
учитывать влияние прогиба колонны на её несущую способность.
Случайные эксцентриситеты:
еа1 = l0/600 = 11,4/600 = 0,019 м = 19 мм;
ea2 = h/30 = 0,6/30 = 0,02
= 20 мм;
Эксцентриситет приложения
нагрузки е0 = |M|/N =3659/892,83 = 4,1см <еа2= =20 мм, следовательно
случайный эксцентриситет не учитываем.
Находим условную
критическую силу Ncr и коэффициент увеличения начального эксцентриситета
η.
, (IV.19[1])
где
δ = е0/h = 4,1/600 =
0,007< δе,
min = 0,5 – 0,01· l0/h –
0,01· Rb γb2 =0,5-0,14- 0,01∙11,5∙1,1 =0,234. Принимаем
δ= 0,234.
I –момент инерции
бетонного сечения, м4;
Is – приведённый момент
инерции сечения арматуры, вычисляемый относительно центра тяжести бетонного
сечения, и определяемый по формуле (3.2.3),м4;
, (3.2.2)
, (3.2.3)
μ – коэффициент
армирования, в первом приближении задаёмся равным 0,01;
а=а/ =4см – расстояние от
наружной грани до центра тяжести арматуры;
α =Es/Eb =200/24
=8,33
φl – коэффициент,
учитывающий влияние длительного действия нагрузки на прогиб элемента в
предельном состоянии, определяемый по формуле:
φl=1 + β∙Ml/M,
(IV.20[1] )
M и Мl – моменты,
определяемые относительно оси, параллельной границе сжатой зоны, проходящей
через центр растянутой или менее сжатой (при полностью сжатом сечении)
арматуры, соответственно от совместного действия всех нагрузок и от постоянной
и длительной нагрузки;
β – коэффициент
принимаемый согласно табл. IV.2[1], принимаем β=1.
Моменты М и МI одного
знака, тогда коэффициент, учитывающий длительное действие нагрузки:
φl =
1 + β·|M1l/M1| = 1 + 1·240,16/139,88 =2,72;
M1l = Ml
+ Nl·(0,5·h – a) =18,88 +643,51·(0,38·0,6 – 0,04) =138,86 кН·м;
M1 = M + N·(0,5·h – a) =36,59+892,83∙0,29=240,16
кН·м.
φsp – коэффициент,
учитывающий влияние предварительного напряжения арматуры на жёсткость элемента
в предельном состоянии, принимаем равным 1 т.к. нет предварительного обжатия.
Определяем моменты инерции
сечения:


Условная критическая сила

Определяем коэффициент
увеличения начального эксцентриситета по формуле:
η=1/(1 – N/Ncr), (IV.18[1])
η = 1/(1 –892,83/7190)
=1,14
Определяем высоту сжатой
зоны сечения, из уравнения (3.2.4).
N=Rb∙b∙x
+RscAs/ - RsAs (3.2.4)
Т.к. колонна имеет
симметричное армирование, т.е. As = As/ и Rsc =Rs, то из уравнения (3.2.4),
высота сжатой зоны сечения:
х = N/ Rb∙b, (3.2.5)
х=892,83/(1,1∙11500∙0,5)=14,1∙10-2м=14,1см
Относительная высота
сжатой зоны: ξ=х/h0=14,1/56 =0,25.
Определяем значение
граничной относительной высоты сжатой зоны:
, (II.42[1])
где w =0,85 -0,008 Rb
=0,85 – 0,008∙1,1∙11,5=0,749- коэффициент полноты фактической эпюры
напряжений в бетоне при замене её условной прямоугольной эпюрой; σsc,u
=400 МПа т.к. γb2>1; σSR=Rs =365 МПа.
ξR
=0.749/[1+365/400(1 – 0,749/1,1)]=0,58>ξ=0,211
Определение требуемой
площади сечения поперечной арматуры
Требуемая площадь сечения
продольной арматуры при симметричном армировании определяется по следующей
формуле:
, (IV.38[1])
где, е – расчётный
эксцентриситет продольной силы, определяемый по формуле:
е=е0 η +h/2 – а =4,1∙1,11
+30 – 4=30,55 см

Т.к. Аs<0, то площадь
арматуры назначаем по конструктивным соображениям Аs =0,002bh0 =0,002∙38∙57=4,33см2.
Принимаем 3d16A-III c As=6,03см2 по прил.VI.[1]; μ1=2∙6,03/(60∙38)=
0,004 для определения Ncrc ,было принято μ1=0,01 перерасчет не производим
из-за небольшой разности в значениях μ1 и по причине конструктивного
принятия сечения арматуры.
Проверку достаточности
сечения арматуры не производим по остальным сочетаниям т.к. различие в
продольной силе не значительны и они не могут существенно повлиять на сечения
арматуры.
Расчёт из плоскости изгиба
За высоту сечения
принимаем его размер из плоскости поперечной рамы, т.е. в этом случае h = b
=380 мм. Расчётная длина надкрановой части из плоскости составляет
l0= ψ·H1= 1,5·5,7=8,55
м (табл. XIII.1[1]).
Расчёт сечения колонны в
плоскости перпендикулярной плоскости изгиба не производим, т.л. гибкость из
плоскости
l0//iу=855/10,97 =77,93<
λ=l0/i=48,5, где .
4.3 Расчёт прочности
подкрановой части колонны
Т.к. подкрановая часть
колонны имеет сплошное сечение, то расчёт выполняем аналогично расчету
надкрановой части.
Размеры прямоугольного
сечения: b = 500 мм; h = h1 = 900 мм; для продольной арматуры принимаем а = а'
= 50 мм, тогда рабочая высота сечения h0 = h – а = 900 – 50 = 850 мм.
Комбинации усилий для
надкрановой части колонны Таблица №6
Вид усилия |
Величины усилий в
комбинациях |
Mmax |
Mmin |
Nmax |
M, кН·м |
330,19 |
545,43 |
348,29 |
N, кН |
2261,28 |
1663,61 |
2510,6 |
Q, кН |
20,99 |
55,68 |
106,03 |
Усилия от всех нагрузок
без учёта крановых и ветровых (см. табл.№5):
Страницы: 1, 2, 3, 4, 5, 6, 7, 8 |