рефераты рефераты
Главная страница > Курсовая работа: Стальной каркас промышленного здания  
Курсовая работа: Стальной каркас промышленного здания
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Стальной каркас промышленного здания

 – расчетное усилие в раскосе рассчитываемого узла;

, , , ;

;

.

где  - длина сварного шва.

Окончательно принимаем .

1.5.4 Расчет укрупнительного узла фермы

Расчет укрупнительного узла не производим, а принимаем по сортаменту фланцевых соединений растянутого пояса фермы по таблице 3 /7/.

Принимаем болты из стали марки 40Х «селект» диаметром 20 мм, по таблице  /1/.

Размещаем болты в соответствии с таблицей 39 /1/.


Рисунок 11 – Схема фланцевого соединения


2 Расчет поперечной рамы

2.1 Компоновка поперечной рамы каркаса

Поперечные рамы каркаса состоят из колонн (стоек рамы) и ригелей (в виде ферм или сплошностенчатых сечений).

Рисунок 12 – Схема поперечной рамы однопролетного здания

Мостовой кран принимаем по приложению 1 /4/ в зависимости от грузоподъемности крана по заданию.

Принимаем кран грузоподъемностью .

Вертикальные габариты здания зависят от технологических условий производства и определяются расстоянием от уровня пола до головки кранового рельса  и расстоянием от головки кранового рельса до низа несущих конструкций покрытия . В сумме эти размеры составляют полезную высоту цеха Н.

Размер  диктуется высотой мостового крана:


,

где  – расстояние от головки рельса до верхней точки тележки крана, определяемое по приложению 1 /4/;

100 мм – установленный по требованиям техники безопасности зазор между верхней точки тележки крана и строительными конструкциями;

 – размер, учитывающий прогиб конструкции покрытия, принимаемый равный 200 - 400 мм, в зависимости от величины пролета, т.е. для больших пролетов больший размер.

Окончательный размер  принимаем кратный 200 мм .

Высота цеха от уровня пола до низа стропильных ферм:

,

где  – наименьшая отметка головки кранового рельса, которая задается по условию технологического процесса (по заданию ).

Окончательный размер  принимаем кратный 600 мм .

Уточняем высоту

.

Далее устанавливаем размер нижней части колонны :

,

где  по приложению 1 /4/;

 - принимать произвольно.

Размер верхней части колонны :

.

Ширина верхней части колонны:

, принимаем .

Ширина нижней части колонны:

,

где из рисунка 12:

,

принимаем ;

 - наружная привязка верхней части колонны;

 - по приложению 1 /4/.

.

2.2 Сбор нагрузок на поперечную раму

2.2.1 Постоянная нагрузка

Постоянные нагрузки на ригель рамы обычно принимают равномерно распределенными по длине ригеля.

Суммарная нагрузка на ферму равна:

 - из таблицы 1.

Погонная нагрузка на ригель рамы равна:

,

где  - коэффициент надежности по назначению здания.

Рисунок 13 – Схема к расчету на постоянную нагрузку

2.2.2 Снеговая нагрузка

Погонная снеговая нагрузка на ригель рамы равна:

,

где  - из таблицы 4 /3/.

Рисунок 14 – Схема к расчету на снеговую нагрузку

2.2.3 Ветровая нагрузка

Погонная фактическая, активная составляющая нагрузка на стойку рамы равна:

,

где  - коэффициент надежности по ветровой нагрузки;

 - нормативное значение ветрового давления, определяется по таблице 5 /3/ в зависимости от ветрового района;

с - аэродинамический коэффициент, определяемый по приложению 4 /3/ для активной и пассивной составляющих;

 - коэффициент, учитывающий изменение ветрового давления по высоте, определяется по таблице 6 /3/, в зависимости от типа местности.

Выбираем тип местности В — городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м.


Рисунок 15 – Схема к расчету на ветровую нагрузку


Для заданного типа местности В с учетом коэффициента k из таблицы 6 /3/ получаем следующее значение ветрового давления по высоте здания:

- на высоте до 5 м;

- на высоте 10 м;

- на высоте 20 м.

Согласно рисунку 15, вычислим значения нормативного давления на отметках верха колонн и верха панели:

- на отметке 13,80:

;

- на отметке 17,68:

.

Для удобства фактическую линейную нагрузку (в виде ломанной прямой) можно заменить эквивалентной, равномерно распределенной по всей высоте.

Найдем площади эпюр:

;

;

.

Активная составляющая нагрузки:

.

Погонная фактическая, пассивная составляющая нагрузка на стойку рамы равна:

,


Значение ветрового давления по высоте здания:

- на высоте до 5 м;

- на высоте 10 м;

- на высоте 20 м.

- на отметке 13,80: ;

- на отметке 17,68: .

Найдем площади эпюр:

;

;

.

Пассивная составляющая нагрузки:

.

Ветровая нагрузка, действующая на участке от низа ригеля до наиболее высокой точки здания, заменяется сосредоточенной силой, приложенной в уровне низа ригеля рамы.

Рисунок 16– Схема к расчету на ветровую сосредоточенную нагрузку

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

рефераты
Новости