рефераты рефераты
Главная страница > Курсовая работа: Сборное проектирование многоэтажного промышленного здания с неполным каркасом  
Курсовая работа: Сборное проектирование многоэтажного промышленного здания с неполным каркасом
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Сборное проектирование многоэтажного промышленного здания с неполным каркасом


qn=gnn+Gnn+Pn; gn = qn + Vn; q = gn + Gn + P; g = q +V

3.3 Статический расчёт плиты

Статический, расчёт плиты заключается в определении усилий: изгибающих моментов и поперечных сил в сечениях панели.

Расчётная схема плиты принимается как для свободно опёртой балки, загруженной равномерно-распределённой нагрузкой (рис. 4).

q


Рис. 4 - Расчётная схема плиты: l2- пролет плиты; вр - ширина ригеля

Для расчёта плиты по первой и второй группам предельных состояний требуется вычислить следующие значения изгибающих моментов и поперечных сил.

Изгибающий момент от полной расчётной нагрузки

Изгибающий момент от полной нормативной нагрузки

Изгибающий момент от постоянной и длительной нагрузки

где В – ширина плиты в метрах, переводит нагрузку от 1 м2 в нагрузку на 1 пог. м. длины плиты,

γn – коэффициент надёжности по назначению, γn = 0,95.

,

.

Поперечная сила от полной расчётной нагрузки

3.4 Расчёт плиты по предельным состояниям первой группы

3.4.1 Данные для расчёта

Для выполнения расчётов по предельным состояниям первой и второй групп требуются следующие характеристики материалов:

Rв и Rв, ser - расчётные сопротивления бетона осевому сжатию для предельных состояний, соответственно, первой и второй группы Rв =14,5 МПа, Rв, ser = 11,5 МПа;

Rвt и Rвt, ser - расчётное сопротивление бетона осевому растяжению для предельных состояний, соответственно, первой и второй группы Rвt=1,05 МПа и Rвt, ser = 0,9 МПа;

Rs и Rsw - расчётное сопротивление растяжению, соответственно, продольной и поперечной арматуры Rs =510 МПа Rsw=400 МПа.

Указанные характеристики бетона и арматуры принимаются в зависимости от класса бетона и арматуры.

3.4.2 Расчёт прочности нормальных сечений

Расчётом прочности нормальных сечений определяются диаметр и количество продольной рабочей арматуры в самом напряжённом сечении - в середине плиты. Расчётным поперечным сечением плиты является тавровое сечение с полкой, расположенной в сжатой зоне. При h’f /h≥0,1 в расчёт вводится вся полка.

В зависимости от положения нейтральной оси существуют два случая расчёта тавровых сечений (см. рис. 5):

1 случай - когда нейтральная ось проходит в пределах полки;

2 случай - когда нейтральная ось проходит в пределах ребра.

Рис. 5 - Расчетная схема сечения

Если

(1)

то имеет место первый случай и расчёт ведётся как прямоугольного сечения с шириной .

В формуле (1) где (см).

(см).

120,69 кНм444,44 кНм. Условие выполняется.

При расчёте по первой и второй группам предельных состояний рекомендуется использовать следующие единицы измерения:

М – Н∙см; Rв и Rs - = МПа∙100.

Размеры поперечного сечения – см.

Требуемая площадь продольной арматуры определяется в следующей последовательности.

1.  Вычисляется коэффициент:

(2)

2.  Подбираем коэффициенты ξ =0,05 и η = 0,975.

3.  Проверяют условие:  (3)

 (4)

МПа.

=0,06.

0,05≤0,06- условие выполняется.

4.  Определяем требуемую площадь рабочей арматуры:

 (5)


 

5.  По сортаменту назначаем диаметр и количество продольной рабочей арматуры. Принимаем 2 стержня Ø 22 с Аs = 7,6 (см2).

3.4.3 Расчет плиты на действие поперечной силы

Прочность наклонных сечений плиты на действие поперечной силы обеспечивается постановкой в её рёбрах поперечной арматуры (хомутов). Расчёт ведётся в следующей последовательности:

1. Из условия свариваемости назначается диаметр поперечной арматуры dsw.

2. По диаметру и количеству поперечных стержней в сечении определяется площадь поперечной арматуры.

 мм,

Asw = n∙fsw,

где n – количество каркасов в плите;

fsw – площадь одного поперечного стержня.

Asw = 1,01 см2,

3. По конструктивным условиям назначается шаг поперечных стержней  S:

- если высота плиты h ≤ 450 мм., то но не менее 150 мм,

- если высота плиты h > 450мм., то , но не более 500 мм.

Т.к. h =400 мм, то

Принимаем S = 10 (см).

4. Определяют усилия в хомутах на единицу длины элемента:


Принимаю в качестве поперечной арматуры класс А I с Rsw = 175 МПа.

5. Проверяем условие:

,

где φв3 – коэффициент, зависящий от вида бетона (φв3 = 0,6),

φf – коэффициент, учитывающий влияние сжатых полок в тавровых и двутавровых сечениях.

, φf<0,5.

1,24, т.к. 1,24>0,5, то φf=0,5.

6. Определяем длину проекции опасной наклонной трещины на продольную ось элемента

но Со ≤ 2ho и Со ≤ С, а так же не менее ho, если С > ho.

66≤201, условие выполняется;

66≤2∙35=70, условие выполняется;

187,87 >35, условие выполняется.

φв2 – коэффициент, учитывающий влияние вида бетона (φв2 = 2).

Значение С следует определять по формуле:

,

где Q – поперечная сила от расчётной нагрузки.

7. Вычисляем поперечную силу, воспринимаемую хомутами:

8. Определяем поперечную силу, воспринимаемую бетоном:

При этом должно соблюдаться условие:

Qв ≥ φв3(1+φf)Rвt∙в∙ho,

116,931 ≥ 0,6(1+0,5)1,4∙100∙15∙35 = 66,150 (кН),

9. Проверяем несущую способность плиты по наклонному сечению:


Q ≤ Qв + Qsw,

82,16≤ 116,931 + 116,655 = 233,586 (кH),

10. Проверяем прочность плиты по наклонной полосе между трещинами:

76,85 ≤ 0,3 φw1  φв1 Rв в ho,

φw1 = 1,0 + 5 α μw,

φw1 = 1,0 + 5 6,33 0,007 = 1,22<1,3- условие выполняется,

где β – коэффициент, принимаемый равным 0,01.

3.4.4 Расчёт полки плиты на местный изгиб

Страницы: 1, 2, 3, 4, 5, 6

рефераты
Новости