рефераты рефераты
Главная страница > Курсовая работа: Проектирование несущих железобетонных конструкций многоэтажного промышленного здания  
Курсовая работа: Проектирование несущих железобетонных конструкций многоэтажного промышленного здания
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Проектирование несущих железобетонных конструкций многоэтажного промышленного здания

Стык ригеля и колонны. В верхней части стыка выпуски арматуры из колонны и ригеля соединяются вставкой арматуры на ванной сварке, затем полость стыка замоноличивается. Вставка арматуры повышает точность монтажного соединения в случае нарушения соосности выпусков арматуры. В нижней части стыка монтажными сварными швами соединяются закладные детали колонны и ригеля. Температурный зазор между торцом ригеля и гранью колонны может составлять 60…100 мм.


5. Расчёт и конструирование колонны 5.1 Подбор продольной арматуры

В колоннах средних рядов здания изгибающие моменты М незначительны, поэтому можно принять, что колонна воспринимает только продольные усилия N и работает в условиях внецентренного сжатия со случайным эксцентриситетом.

При действии значительных изгибающих моментов М колонна является внецентренно сжатой с расчётным эксцентриситетом e = M/N.

Подбор продольной арматуры достаточно провести для наиболее нагруженной колонны 1-го этажа, а в колонных остальных этажей принять его таким же. Расчётное продольное усилие в колонне 1-го этажа: Nk = 2 175 кН (п.2.4.4).

Расчётная длина колонны принимается равной высоте этажа: l0 = Нэ = 4,2 м.

Классы бетона и арматуры для колонны принимаются такими же, как и у ригеля перекрытия (п.4.1). Коэффициент длительности действия нагрузки gb2 = 0,9.

Продольное армирование колонны назначается из условия прочности, которое имеет вид:

Nk £ j (Rb gb2 A + Rsc As,tot),

где j - коэффициент, учитывающий влияние продольного изгиба; принимается по справочной таблице в зависимости от отношения расчётной длины колонны к её ширине: l0/hk = 4,2/0,45 = 9,33; тогда коэффициент j = 0,9.

l0/hk

6…12 16 20
j 0,9 0,8 0,7

А - площадь поперечного (бетонного) сечения колонны: A = (bk) 2 = 452 = 2025 см2.

Rsc - расчётное сопротивление продольной арматуры сжатию; для арматуры класса A-III (А400) Rsc = 365 МПа.

As,tot - суммарная площадь продольной арматуры колонны, которую необходимо определить в результате расчёта.

Требуемая площадь продольной арматуры As,tot назначается из двух условий:

из условия прочности:

.

из условия обеспечения минимального коэффициента армирования

m min = 0,002 (0,2%): As,tot ³ 2A×m min = 2×2025×0,002 = 8,1 см2.

Принимаем по сортаменту As,tot = 10,18 см2 (4Æ18 A 400).

Устанавливаем 4 арматурных стержня по углам колонны (рис.5.1).

Допускается применять для армирования колонны 6 стержней, однако в данном случае этот вариант является менее выгодным.

5.2 Конструирование поперечной арматуры колонны

Поперечная арматура в колоннах устанавливается в целях:

Образования пространственных каркасов.

Предотвращения выпучивания продольных стержней.

Сдерживания поперечных деформаций бетона.

Диаметр поперечной арматуры d назначается из условия свариваемости с продольными арматурными стержнями диаметром D:

d ³ 0,25D = 0,25×18 = 4,5 мм. Принимаем поперечную арматуру Æ5 A 400.

Шаг поперечных арматурных стержней не должен превышать

s £ 20D = 20×18 = 360 мм; s £ 500 мм. Принимаем s = 350 мм (кратно 50 мм).

Для усиления концевых участков у торцов колонн дополнительно устанавливаем сетки косвенного армирования из арматуры Æ8 A-I, размер ячеек 50´50 мм. Назначаем 5 сеток с шагом 75 мм.

Толщина защитного слоя бетона аb для продольной рабочей арматуры колонны (см. рис.5.1) должна составлять (п.5.5 СНиП [2]):

не менее диаметра стержня: аbD = 18 мм,

не менее 20 мм: аb ≥ 20 мм.

Требуемое расстояние от наружной грани колонны до центра тяжести продольной арматуры: а ³ аb + 0,5D = 21 + 0,5·18 = 29 мм. Принимаем a = 30 мм, тогда

фактическая толщина защитного слоя: аb = а - 0,5D = 30 - 0,5·18 = 21 мм > 18 мм.

Толщина защитного слоя бетона аbw для поперечной арматуры колонны должна составлять (п.5.5 СНиП [2]):

не менее диаметра стержня: аbwd = 5 мм,

не менее 15 мм: аbw ≥ 15 мм.

Фактическая толщина защитного слоя: аbw = аb - d = 21 - 5 = 16 мм > 15 мм. Таким образом, требования по величине защитного слоя выполнены.

Рис.5.1 Размещение арматуры в поперечном сечении колонны.


6. Расчёт и конструирование фундамента 6.1 Общие соображения

Проектируем отдельный монолитный фундамент мелкого заложения под колонну.

Основные понятия: обрез фундамента - это его верхняя грань, подошва фундамента - это нижняя грань, основание - это грунт под подошвой фундамента, глубина заложения подошвы фундамента - это расстояние от наружной поверхности земли до подошвы фундамента.

Глубина заложения подошвы фундамента назначается исходя из инженерно-геологических условий площадки строительства, климатических воздействий на верхние слои грунта (в том числе условий промерзания грунта), а также конструктивных особенностей возводимого и соседних сооружений и составляет (по заданию) df = 1,3 м.

Пол 1-го этажа выполняется по грунту. Заглубление обреза фундамента относительно уровня пола 1-го этажа: d0 = 0,15 м.

Высота фундамента: hf = df - d0 = 1,30 - 0,15 = 1,15 м.

Расчётное сопротивление грунта основания (по заданию):

R0 = 0,25 МПа = 250 кН/м2.

Средний удельный вес фундамента с грунтом на его уступах: gm = 20 кН/м3.

Классы бетона и арматуры для фундамента принимаются такими же, как и у ригеля перекрытия (п.4.1). Коэффициент длительности действия нагрузки gb2 = 0,9.

Под фундаментом предусматривается бетонная подготовка толщиной 100 мм из бетона класса В3,5.

Фундамент под колонну, сжатую со случайным эксцентриситетом, воспринимает в основном только продольную силу, поэтому его можно считать центрально нагруженным. Продольные усилия на уровне верха фундамента допускается принимать такими же, как на уровне пола 1-го этажа (п.2.4.4): нормативное усилие Nk.n = 1947 кН; расчётное усилие Nk = 2175 кН.

Центрально нагруженные фундаменты обычно проектируют квадратными в плане.

Внецентренно нагруженные колонны и фундаменты проектируют прямоугольными, при этом широкая сторона располагается в плоскости действия изгибающего момента.

Расчёт фундамента состоит из двух этапов. На первом из них проводится расчёт по несущей способности основания, в результате которого определяется площадь подошвы фундамента Af. На втором этапе выполняется расчёт по несущей способности самого фундамента, на основе которого определяются остальные размеры фундамента и площадь рабочей арматуры As,f.

6.2 Определение площади подошвы фундамента

Расчёт по несущей способности основания выполняется на действие нормативных нагрузок с учётом веса фундамента и грунта на его уступах. Расчёт производится из условия, что давление под подошвой фундамента pn не должно превышать расчётное сопротивление грунта основания R0:

.

Тогда требуемая площадь подошвы фундамента:

.

Необходимый размер стороны подошвы квадратного в плане фундамента:

,

принимаем af = 3,0 м = 3000 мм (кратно 100 мм).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27

рефераты
Новости