рефераты рефераты
Главная страница > Курсовая работа: Конструктивная схема одноэтажного промышленного здания  
Курсовая работа: Конструктивная схема одноэтажного промышленного здания
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Конструктивная схема одноэтажного промышленного здания

Bsh- ширина стального листа, зависящая от конкретных размеров

конструкций и измеряющаяся в пределах 85…90 см. =85см.

Площадь поперечного сечения швеллера Aсh, выполняющая роль пояса тормозной балки для швеллера №16 Aсh= 18,1 см2

Момент инерции (см4) площади поперечного сечения балки относительно оси Х-Х

Ix= hw3·tw/12+2·( Bf·tf3/12+ Afb((hw+ tf)/2)2)

Ix= 56,43·0,9/12+2·( 18·1,83/12+ 32,4((56,4+ 1,8)/4)2)=68346 см4

Расстояние от центра тяжести тормозной балки до оси Y0-Y0 (см)


Хc=(Ach·Xcho+Ash· Xsho)/( Ach+ Ash+2Aft)

Хc=(18,1·83+51· 40,5)/( 18,1+ 51+2*32,4) =26,7 см

где Xcho – расстояние от оси Y0-Y0 балки до центра тяжести окаймляющего

швеллера

Xsho – расстояние от оси Y0-Y0 балки до центра тяжести тормозного листа

Момент инерции площади поперечного сечения тормозной балки относительно оси Y-Y (см4)

Iy=Ich+AchXch2+tshb3sh/12+ AshXsh2+ tfb3f/12+AftXc2

 

где Xch-расстояние от оси Y-Y до центра тяжести швеллера

Xsh-расстояние от оси Y-Y до центра тяжести тормозного листа

Ich- собственный момент инерции швеллера

Iy=63+18,1·56,32+0,6·853/12+ 51·13,82+ 1,8·183/12+32,4·26,72=121826 см4

Моменты сопротивления площади поперечного сечения:

-подкрановой балки относительно оси Х-Х

Wx=2Ix/h Wx=2*68346/60=2278 см3

 

-тормозной балки относительно оси Y-Y

Wy=Iy/(Xc+bf/2) Wy=121826/(26,7+18/2)=3413 см3

Статический момент (см3) половины сечения подкрановой балки относительно нейтральной оси Х-Х

Sx= Af(hw+tf)/2 + Awhw/8

Sx= 32,4(56,4+1,8)/2 + 50,76·56,4/8=1300 см3

Проверка прочности подкрановой балки по нормальному напряжению в ее верхнем поясе производится по формуле

σмах=Mf/Wx+Mt/Wy<Rγc/γn

σмах=72900/2278+2420/3413=32,7кН/см2<33·1/0,95=34,7

Условие выполнено.

Проверка прочности балки по касательному напряжению:

τmax=QfSx/Ixtw<Rsγc/γn

τmax=547·1300/68346·0,9=11,6кН/см2<19,14·1/0,95=20,2

Проверка прочности стенки балки по местному напряжению от давления кранового колеса

σloc=γwfγfFn/twlef <Ryγc/γn

σloc=1,1·1,1·315/0,9·23,4=18,1кН/см2 <33·1/0,95=35 Условие выполнено.

где γwf- коэффициент, учитывающий неравномерность давления колес и

повышенную динамичность под стыком рельсов, принимаемый для

кранов нормального режима работы γwf=1,1

γf-коэффициент надежности по нагрузке γf=1,1

lef- условная длина распределения местного давления (см), определяемая

в сварных балках по формуле

lef=3,25* 3Ö(If/tw)=3,25* 3Ö(336/0,9)=23,4см


где If- сумма моментов инерции площади сечения верхнего пояса балки и  кранового рельса относительно собственных осей

If=bft·tf3/12+Ir=18·1,83/12+327=336см4

 

Ir- момент инерции кранового рельса, принимаемый по соответствующему

ГОСТу. =327см4

Проверка жесткости подкрановой балки производится по формуле

f=Min·l2·γc/10·E·Ix <fu;

f=45600·6002·1/10·20600·68346=1,2см <1,5 Жесткость соблюдена.

где f- прогиб балки от нормативной нагрузки

Min-нормативный изгибающий момент (кН·см) в балке от загружения ее

одним краном

fu- предельный прогиб, равный для балок под краны режимов работы

1К-6К l/400=600/400=1,5см

Перенапряжения в конструкциях не допускаются.

Обеспечение местной устойчивости элементов подкрановой балки

Общая устойчивость подкрановой балки при наличии тормозной балки обеспечена.

Местная устойчивость сжатого (верхнего) пояса подкрановой балки обеспечена, если выполняется условие

Bef/tf<0,5√(E/Ry)

где Bef-ширина свеса пояса

8,55/1,8<0,5Ö(20600/33)

4,75<12,49

Условная гибкость стенки балки


λw=(hw/tw) √(Ry/E)≤ 2,2

λw=56,4(33/20600) 1/2/0,9=2,173< 2,2 Условие выполняется

Определение размеров опорного ребра балки

Разрезная подкрановая балка опирается на колонну посредством опорного ребра с выступающим пристроганным торцом

Требуемая площадь сечения ребра (см2)

Ap>Qf·γn/Rp· γc

 

где Rp- расчетное сопротивление стали смятию торцевой поверхности, кН/см2

Ap>547·0,95/48·1=11 см2

Ширина опорного ребра (см)

Bα=Ap/tα=11/1,2=9,2 см

где tα- толщина ребра, назначаемая в пределах 12…20мм. =1,2см

Принимаем Bα=180 мм

Ширина выступающей части ребра (ширина свеса Bef) из условия обеспечения его местной устойчивости должна отвечать неравенству

Bef/tα<0,5√(E/ Ry)

Ширина свеса Bef=(Bα-tw)/2=(9,2-0,9)/2=4,15см

4,15/1,2<0,5√(20600/33)

3,46<12,49

Местная устойчивость обеспечена.

Выступающая вниз часть ребра а должна отвечать неравенству а<1,5 tα;

Принимаем а=18мм

18≤1,5·12=18мм – условие выполняется

Определение веса и массы подкрановой балки

Вес подкрановой балки (кН):

G=ψAlγct,

где ψ-строительный коэффициент, принимаемый для сварных балок с

поперечными ребрами жесткости: ψ=1,2

А- площадь поперечного сечения балки, м2

γct- объемный вес стали: γct=78,5 кН/м3

l-пролет балки,м

A=ΣAi=Aw+2Af+Ash+Ach=50,76+2*32,4+51+18,1=184,66см2=0,0185м2

G=1,2*0,0185*6*78,5=10,5кН

Масса подкрановой балки (т):

M=G/g

где g – ускорение свободного падения. = 9,81м/с2

М=10,5*1000/9,81=1070кг=1,07т

4.Расчет стропильной фермы

Исходные данные :

Схема : № 2. Схема компановки:№4.

Пролёт фермы :24 м.

Длинна панели нижнего пояса : 3м.

Опорная стойка : 1,6м.

Шаг фермы : 6 м.

Сталь фермы : 14Г2

Постоянные нормативные нагрузки : 0,6 – 0,2 – 0,14 – 0,4кН/м2

Вес тельфера 70 кН.

Район строительства: Вильнюс.

Рассчитать узлы :Е.

Уклон фермы : 1/8

Определим геометрические длины всех панелей поясов.

L15 = L14 = L13 = L12 = L11 = L10 = L9 = L8 = 3 м.

tg α = 1/8 α = 7012’

sin α = 0.124

cos α = 0.992

L0 = L1 = L2 = L3 = L3 = L4 = L5 = L7 = L6 = 3 м.

Определим геометрические длины всех стоек.

L’0 = L’16 = 1,6 м.

L’2 = L’14 = 1,98 м.

L’4 = L’12 = 2,36 м.

L’6 = L’10 = 2,74 м.

L’8 = 3,1 м.

Определяем геометрические длины всех раскосов.

 L’5=L’11=3,8м

Определение нагрузок на ферму.

На ферму действует два вида нагрузок:

§  Постоянная от собственного веса конструкций покрытия

§  Кратковременная снеговая

Таблица 1 - Нагрузки на ферму приведены в табличной форме:

Вид нагрузки Составляющие нагрузки

Нормат. Значение нагрузки, кН/м2

Коэффи циент надеж-ности по нагрузке

Расчетное значение нагрузки, gi кН/м2

Постоянная

Гравийная защита-20мм;

ж/б плита

gn=0,4; 1,4 γf=1,3; γf=1,1 gn*γf=0,52; 1,54
Гидроизоляционный рубероидный ковер в 3 слоя 0,15 1,3 0,198

Утеплитель-пенобетоннные плиты толщиной120мм,

γ=5 кН/м3

0,6 1,2 0,72
Пароизоляция из одного слоя рубероида 0,05 1,3 0,065
Выравнивающая цементная стяжка толщиной 20мм 0,4 1,3 0,52
Стальные конструкции покрытия (фермы, связи) 0,4 1,05 0,42
ИТОГО g=3,98

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

рефераты
Новости