рефераты рефераты
Главная страница > Контрольная работа: Строительные конструкции  
Контрольная работа: Строительные конструкции
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: Строительные конструкции

Арматуру колонн с выпусками лучше соединять дуговой сваркой. Конструкция стыка должна быть удобной для монтажа и сварки

Если все сечение армировано лишь четырьмя стержнями, то стыки выполняют только сварными.

Ленточные фундаменты

Под несущими стенами ленточные фундаменты выполняют преимущественно сборными. Они состоят из блоков-подушек и фундаментных блоков (рис. 4.24). Блоки-подушки могут быть постоянной и переменной толщины, сплошными, ребристыми, пустотными. Укладывают их вплотную или с зазорами. Рассчитывают только подушку, выступы которой работают как консоли, загруженные реактивным давлением грунта р (без учета массы веса и грунта на ней). Сечение арматуры подушки подбирают по моменту

М= 0,5р12,

где / – вылет консоли.

Толщину сплошной подушки h устанавливают по расчету на поперечную силу Q = pi, назначая ее такой, чтобы не требовалось постановки поперечной арматуры.

Ленточные фундаменты под рядами колонн возводят в виде отдельных лент продольного или поперечного (относительно рядов колонн) направления и в виде перекрестных лент (рис. 4.25). Ленточные фундаменты могут быть сборными и монолитными. Они имеют тавровое поперечное сечение с полкой понизу. При грунтах высокой связности иногда применяют тавровый профиль с полкой поверху. При этом уменьшается объем земляных работ и опалубки, но усложняется механизированная выемка грунта.

Выступы полки тавра работают как консоли, защемленные в ребре. Полку назначают такой толщины, чтобы при расчете на поперечную силу в ней не требовалось армирования поперечными стержнями или отгибами. При малых вылетах полку принимают постоянной высоты; при больших – переменной с утолщением к ребру.

Отдельная фундаментная лента работает в продольном направлении на изгиб как балка, находящаяся под воздействием сосредоточенных нагрузок от колонн сверху и распределенного реактивного давления грунта снизу. Ребра армируют подобно многопролетным балкам. Продольную рабочую арматуру назначают расчетом по нормальным сечениям на действие изгибающих моментов; поперечные стержни (хомуты) и отгибы – расчетом по наклонным сечениям на действие поперечных сил.

Сплошные фундаменты

Сплошные фундаменты бывают: плитными безбалочными; плит-но-балочными и коробчатыми (рис. 4.26). Наибольшей жесткостью обладают коробчатые фундаменты. Сплошными фундаменты делают при особенно больших и неравномерно распределенных нагрузках. Конфигурацию и размеры сплошного фундамента в плане устанавливают так, чтобы равнодействующая основных нагрузок от сооружения проходила в центре подошвы

В зданиях и сооружениях большой протяженности сплошные фундаменты (кроме торцовых участков небольшой длины) приближенно могут рассматриваться как самостоятельные полосы (ленты) определенной ширины, лежащие на деформируемом основании. Сплошные плитные фундаменты многоэтажных зданий загружены значительными сосредоточенными силами и моментами в местах описания диафрагм жесткости. Это должно учитываться при их проектировании.

Безбалочные фундаментные плиты армируют сварными сетками. Сетки принимают с рабочей арматурой в одном направлении; их укладывают друг на друга не более чем в четыре слоя, соединяя без нахлестки – в нерабочем направлении и внахлестку без сварки – в рабочем направлении. Верхние сетки укладывают на каркасы подставки.

Основные сведения о грунтах оснований нефтегазовых сооружений

Грунты – это любые горные породы, как рыхлые, так и монолитные, залегающие в пределах зоны выветривания (включая почвы) и являющиеся объектом инженерно-строительной деятельности человека.

Наиболее часто в качестве оснований используются несцементированные, сыпучие и глинистые грунты, реже, так как реже выходят на поверхность, – скальные грунты. Классификация грунтов в строительстве принимается в соответствии с ГОСТ 25100–95 «Грунты. Классификация» [15].

Знание строительной классификации грунтов требуется для оценки их свойств как оснований под фундаменты зданий и сооружений. Грунты делятся на классы по общему характеру структурных связей. Различают: класс природных скальных грунтов, класс природных дисперсных грунтов, класс природных мерзлых грунтов, класс техногенных грунтов.

Скальные грунты состоят из магматических, метаморфических и осадочных пород, обладающих структурным сцеплением, высокой прочностью и плотностью.

К магматическим относятся граниты, диориты, кварцевые порфиры, габбро, диабазы, пироксениты и т.д.; к метаморфическим – гнейсы, сланцы, кварциты, мраморы, риолиты и т.д.; к осадочным – песчаники, конгломераты, брекчии, известняки, доломиты. Все скальные грунты обладают очень высокой прочностью, структурными жесткими связями и позволяют возводить на них практически любые нефтегазовые объекты.

К рыхлым грунтам, называемым в ГОСТ 25100–95 [15] дисперсными, относятся грунты, состоящие из отдельных элементов, образовавшихся в процессе выветривания скальных грунтов. Перенос отдельных частиц рыхлого грунта водными потоками, ветром, оползанием под действием собственного веса и т.п. приводит к образованию больших массивов рыхлых грунтов. Связи между отдельными частицами слабые. Рыхлые или дисперсные грунты не всегда обладают достаточной несущей

способностью, поэтому размещение на таких грунтах сооружений должно быть обоснованным. Требуется тщательное исследование свойств грунта в естественном состоянии, а также их изменение под воздействием нагрузки от сооружений.

Одной из основных характеристик рыхлых грунтов является размер отдельных частиц и их связанность друг с другом. В зависимости от размеров отдельных частиц грунты подразделяют на крупнообломочные, песчаные и глинистые. Крупнообломочные грунты содержат более 50% по массе частиц крупностью более 2 мм; песчаные сыпучие грунты в сухом состоянии содержат менее 50% по массе частиц крупностью более 2 мм; глинистые грунты обладают способностью существенно изменять свойства в зависимости от насыщенности водой.

По крупности отдельных частиц глинистые и песчаные грунты подразделяются на более дифференцированные виды: суглинки, пылеватые суглинки, супеси.

Определение размеров подошвы фундаментов, выполняемых на дисперсных грунтах

Как уже отмечалось, для фундаментов на дисперсных грунтах нормальным считается, когда осадка фундамента не превышает предельной величины, при этом давление на грунт под подошвой фундамента обычно не превышает расчетного сопротивления грунта R (см. § 4.1.4.2).

От размеров подошвы фундамента зависит его осадка (деформация). Расчет по деформациям относится ко второй группе предельных состояний, и, соответственно, расчеты размеров подошвы фундамента следует вести по нагрузкам, принятым для расчета второй группы предельных состояний, – iVser (сервисная нагрузка). Сервисная нагрузка принимается равной нормативной нагрузке или определяется приближенно через расчетную нагрузку, деленную на 1,2 – средний коэффициент надежности по нагрузкам:

Nser = Nn или Nser = N/1,2.

Нагрузка Nser собирается до верхнего обреза фундамента, поэтому при определении размеров подошвы фундамента необходимо учитывать и нагрузку от его собственного веса и веса грунта, находящегося на уступах фундамента Nf так как они также оказывают дополнительное давление на грунт. Нагрузку Nf можно примерно определить как произведение объема, занятого фундаментом и грунтом, находящимся на его обрезах, V = Afd1, на средний удельный вес бетона и грунта ут = 20 кН/м3 (рис. 4.35); Af – площадь подошвы фундамента.

Давление под подошвой фундамента определяется по формуле

P=N +N/A = (4.32)

Приравняв давление под подошвой фундамента расчетному сопротивлению грунта p = R, можно вывести формулу для определения требуемой площади подошвы фундамента (4.33)

Для проверки достаточности площади существующих или запроектированных фундаментов пользуются формулой

При горизонтальном залегании пластов грунта (однородный, равномерно и не сильно сжимаемый грунт) для зданий и фундаментов обычной конструкции можно считать, что подобранные таким способом размеры подошвы фундамента (по формуле (4.33)) (или проверенный существующий фундамент (по формуле (4.34)) удовлетворяют требованиям расчета по деформациям (4.34) и расчет осадок фундамента можно не производить. (Более подробно см. п. 2.56 СНиП 2.02.01–83*) [57].

Расчет площади подошвы фундамента выполняют обычно в следующей последовательности.

Установив по таблицам (см. табл. 4.6, 4.7) величину расчетного сопротивления грунта Rq, определяем приближенное значение площади подошвы фундамента по формуле (4.35)

затем назначаем размеры подошвы фундамента и, определив механические характеристики грунтов (удельное сцепление сп и угол внутреннего трения фп (см. табл. 4.4, 4,5), определяем уточненное значение расчетного сопротивления грунта R по формуле (4.14), по которому, в свою очередь, уточняем требуемые размеры подошвы фундамента по формуле (4.33), и окончательно принимаем подошву фундамента.

До расчета армирования необходимо убедиться в том, что габариты фундамента не пересекаются с гранями пирамиды продавливания. Для определения сечения арматуры сетки нижней ступени вычисляют изгибающие моменты в каждой ступени (рис. 4.36).

Изгибающий момент в сечении I–I равен

МI = 0,125/pгр(l-lk)2b,       (4.36)

а необходимая площадь сечения арматуры

А = MI /0,9Rsh0.            (4.37)

Для сечения II–II соответственно

МII = 0,125ргр(1-l1)2b;       (4.38)

AsII = MII /0,9Rs(h0-hI).      (4.39)

Выбор арматуры осуществляется по максимальному значению Asi, где i= 1–3.

Фундаменты армируют по подошве сварными сетками из стержней периодического профиля. Диаметр стержней должен быть не менее 10 мм, а их шаг – не более 200 и не менее 100 мм.

Страницы: 1, 2, 3, 4, 5

рефераты
Новости