рефераты рефераты
Главная страница > Реферат: Цифровые системы управления связью  
Реферат: Цифровые системы управления связью
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Цифровые системы управления связью

Уровень 2 (звеньевой) – отвечает за передачу без ошибок сообщений уровня 3 между пользователями и сетью, поэтому включает в себя функции обнаружения и коррекции ошибок. Для этого в каждое сообщение в цикле добавляется контрольная сумма. Правильно полученная информация в цикле подтверждается сигналом RR (готов получить) после чего осуществляется ее прием. Если цикл содержит ошибку и это было выявлено при помощи контрольной суммы, то формируется сигнал отклонения REJ, что приводит к повторной передаче цикла информации. Для удержания следа передаваемых циклов, они нумеруются, что позволяет легко осуществлять слежение за ними и определять был ли цикл передан или утерян во время передачи.

Уровень 1 (физический) – передает и получает биты с соответствующей их синхронизацией.

2). Применяется между станциями и является сигнализацией стандарта SSN7. Используется для доставки контрольной информации всем включенным в сеть ISDN-станциям.


8. Основы оптической передачи информации

8.1. Структура и основные компоненты волоконно-оптических систем передачи данных

В ВОСП носителем сигнала является модулированный световой пучок, а линия передачи состоит из одного или нескольких последовательно соединенных оптических волокон или волоконных световодов.

Оптический передатчик содержит полупроводниковые светодиоды или полупроводниковые лазеры.

Ключевыми элементами приемников световых сигналов являются лавинные фотодиоды или PIN фотодиоды (Лавинные фотодиоды – полупроводниковый элемент фотоприемника, работа которого основана на использовании явления усиления фототока в электрическом поле с малыми шумами за счет лавинного умножения носителей заряда; PIN фотодиоды – вид фотодиода с большой областью собственной проводимости между областями полупроводника с положительными и отрицательными типами проводимости p-n переходы).

Полная скорость передачи информации В определяется выражением: В=Nb, где N – число спектральных каналов, b – скорость передачи информации по одному каналу, которая в настоящее время составляет от 2,5 до 40 Гбит/с.

8.2. Характеристики световых сигналов в волоконной оптике

Свет, как электромагнитную волну высокой частоты, можно охарактеризовать частотой или длиной волны. Для определения длины волны в определенной среде необходимо знать коэффициент преломления этой среды и тогда, длина волны: . Где  – длина волны в среде N; l - длина волны в вакууме; n – показатель преломления среды.

Длина волны света в вакууме l и частота f связаны между собой скоростью света в вакууме С через соотношение: l=C/f, где С= 299792458 м/с.

Световые пучки характеризуются следующими параметрами:

·  Средней импульсной мощностью,

·  Спектром (т.е. зависимостью мощности света от длины волны),

·  Поляризацией,

·  Пространственным и угловым распределением мощности.

Спектр характеризуется функциональной зависимостью плотности мощности (или амплитуды) излучения от длины волны и фазовыми соотношениями между спектральными компонентами.

Ширина линии – это термин, применяемый для описания ширины спектра излучения одночастотных лазеров.

Поляризация – это физическая характеристика светового излучения, описывающая поперечную анизотропию световых волн, т.е. неэквивалентность различных направлений в плоскости, перпендикулярной световому пучку.

В одномодовых световодах, работающих при длинах волн выше критической длины волны, только фундаментальная мода может распространяться вдоль световода с малым затуханием. Распределение мощности и поперечный размер моды описывается величиной диаметра моды. (Мода – нормальные колебания в распределенных колебательных системах или нормальные волны в волноводных системах; Диаметр поля моды – характеристический размер фундаментальной моды в волоконных световодах, характеризующий распределение в ней светового потока).

8.3. Характеристики источников излучения

Световое излучение в полупроводниках возникает при достаточной концентрации избыточных носителей заряда. Это достигается инжекцией носителей зарядов через p-n переход. Если p=n переход работает в режиме прямого направления, то в p-слой инжектируются дополнительные электроны, а в n-слой дополнительные дырки, при рекомбинации которых излучаются кванты света – фотоны.

Процесс инжекции носителей заряда с последующим излучением фотонов называется инжекционной люминесценцией. Индуцированное или вынужденное излучение заключается в том, что фотоны в полупроводнике инициируют излучательную рекомбинацию, что приводит к увеличению числа фотонов, т.е. мощность излучения возрастает.

Инжекционный лазер или лазерный диод это излучатель, использующий вынужденное излучение. В нем, благодаря высокой плотности тока, генерируется большой избыток носителей заряда в зоне проводимости, в результате чего возможно сильное вынужденное излучение.

Следует сказать, что у светодиодов направленность светового потока очень широка, т.е. осуществляется значительный разброс светового потока, в отличие от лазерных диодов, где направленность светового потока очень узкая, что позволяет обеспечить наиболее эффективный ввод светового потока в оптический световод.

Относительная мощность шума источника x определяет максимально допустимый динамический диапазон источника излучения и является индикатором качества. Определяется как отношение среднеквадратичного значения мощности оптического шума в полосе пропускания шириной 1 Гц к квадрату средней оптической мощности: . Токовая чувствительность  показывает эффективность преобразования сигнала электрического вида в оптический сигнал.


8.4. Характеристики волоконных световодов

Все волоконно-оптические световоды имеют двухслойную структуру. Внутренний слой, имеющий более высокий показатель преломления , называется сердцевиной. Внешний слой с меньшим показателем преломления  называется оболочкой. Распространение волны в световоде объясняется переменным отражением луча от стенок световода.

Световоды делятся на многомодовые и одномодовые.

В многомодовых волокнах некоторые световые лучи распространяются прямо по оси волокна, в то время как все другие распространяются в сердцевине волокна по зигзагообразной линии. Моды высшего порядка при распространении проходят более длинный путь, чем низшего; в результате возникает различие во временных задержках, что вызывает межмодовую дисперсию, ограничивающую полосу пропускания волокна.

У одномодвых волокон меньшая дисперсия и, следовательно, большая пропускная способность.

Характеристики волокон:

·  Затухание (или потери);

·  Хроматическая дисперсия;

·  Поляризационная модовая дисперсия.

Затухание – снижение уровня мощности оптического излучения. Является следствием поглощения, рассеяния и других видов ослабления излучения. Выражается в децибелах. Хроматическая дисперсия – составляющая дисперсии волоконного световода, обусловленная нелинейной зависимостью постоянной распространения данной моды оптического волокна от длины волны оптического излучения. Дисперсия – разброс значений групповых скоростей различных составляющих оптического излучения. Поляризационная модовая дисперсия – составляющая дисперсии волоконного световода, обусловленная разными значениями скорости распространения мод двух различных поляризаций в оптическом волокне.

8.5. Характеристики оптических усилителей

В настоящее время в ВОСП применяются оптические усилители трех типов: полупроводниковые оптические усилители; оптические усилители на волокне, легированные эрбием (EDFA) и волоконные усилители на основе вынужденного комбинационного рассеяния или, сокращенно, ВКР усилители (рамановские усилители).

Полупроводниковые оптические усилители вследствие быстрой релаксации, приводящей к возникновению перекрестных помех между спектральными каналами, в системах со спектральным уплотнением каналов пока не применяются.

Очень перспективными для использования в ВОСП являются ВКР усилители. Они обладают следующими преимуществами:

·  Способностью усиливать излучение на любой длине волны при соответствующем выборе источника накачки и типа волокна;

·  Возможностью использования в качестве их активной среды самих волоконных световодов, используемых в системах передачи информации;

·  Возможность сформировать очень широкую полосу усиления (более 100 нм) подбором источников накачки;

·  Низкие шумы.


Список рекомендуемой литературы

1.  Шмытинский В.В., Котов В.К., Здоровцов И.А. Цифровые системы передачи информации на железнодорожном транспорте. – М.: Транспорт, 1995. – 238.

2.  Виноградов В.В. Волоконно-оптические линии связи. М.: Желдориздат 2002.

3.  Куприянов. Техническое обслуживание цифровой обработки сигналов. М.: Желдориздат 2002.

4.  Лозовой И.А. Параметры каналов тональной частоты аппаратуры с ИКМ. – М.: Радио и связь, 1981. – 88с.

5.  Новиков В.А., Багуц В.П., Тюрин В.Л. Многоканальная телефонная связь на железнодорожном транспорте. – М.: Транспорт, 1982. – 327 с.

6.  SI2000 цифровая коммутационная система CS5051AA Версия 5. Справочник по эксплуатации. Документационный центр, Крань, 1998.

7.  Система электропитания MPS50 KSS083000-EDR-030: Справочник по эксплуатации. Документационный центр, Крань, 1999.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

рефераты
Новости