рефераты рефераты
Главная страница > Курсовая работа: Усилитель систем автоматики  
Курсовая работа: Усилитель систем автоматики
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Усилитель систем автоматики

По ряду номиналов возьмемОм.

Емкости в цепи фильтров будут равны на частоте помехи Гц (частота питающей сети) и выше:

.

С запасом, по ряду номиналов возьмем мкФ.

Расчёт регулировки усиления:

Подстройку усиления будем производить изменением глубины ООС одного из каскадов и выберем для этого предоконечный каскад (так как в нём единственном остался Сэ, необходимый для реализации этого метода). Введем для этого сопротивление в цепи эмиттера. Движок резистора подключим к шунтирующей емкости .

Максимальный коэффициент усиления равен:

Минимальный коэффициент усиления возьмем равным  (меньше номинального коэффициента усиления  на 20…30%):

,

- максимальный фактор обратной связи для  - резистора подстройки усиления.

Ом.

Используем для этого подстроечный резистор СП3-28 сопротивлением 10 Ом по ряду номиналов Е6.

Оставшуюся часть сопротивления Ом (62 Ом по ряду номиналов) подключим последовательно с .

Рассчитаем номинал ёмкости Сэ для шунтирования Ом с учётом того, что мы уже рассчитали частотные искажения Мн в области НЧ для всех остальных каскадов и ввели перекоррекцию на НЧ в одном из каскадов.

Частотные искажения на НЧ заданные на весь усилитель равны: Мн=0,77

Частотные искажения вносимые всеми каскадами кроме предоконечного равны:

где Мнi – искажения вносимые i-ым каскадом.

Следовательно на предоконечный каскад, для обеспечения уровня общих искажений усилителя:

Подставив это значение в выражение для нахождения Сэ 4-го каскада (см. выше), получим:

По ряду номинальных значений с запасом выберем Сэ=500мФ.

Расчёт разделительной ёмкости во входной цепи:

Произведем расчет разделительной емкости СР во входной цепи:


По ряду номиналов возьмем пФ.

Расчёт цепи ООС:

Для устранения усиления на частотах выше Fв, введём цепь частотнозависимой отрицательной обратной связи, охватывающей все каскады кроме первого. Введение этой отрицательной обратной связи никак не влияет на свойства усилителя в полосе пропускания, но за пределами полосы она обеспечивает снижение усиления, что не даёт возможность усилителю самовозбудиться на частоте выше Fв, где может выполниться условие баланса фаз и амплитуд. Порядок расчёта следующий:

Так как цепь отрицательной обратной связи представляет из себя ВЧ-фильтр на RC-цепочке. В роли активного сопротивления будет выступать Rвх второго каскада усилителя.

Таким образом нам осталось лишь задаться коэффициентом передачи по напряжению на частоте Fв и найти значение ёмкости в цепи ООС:

Такой коэффициент передачи не увеличит уровень частотных искажений на ВЧ сверх заданных.


2. Расчет варианта усилителя на микросхемах

2.1 Анализ варианта усилителя на ИМС:

В данном варианте усилителя используем интегральную микросхему A2030H –усилитель мощности низкой частоты с дифференциальным входом и двухполярным питанием и операционный усилитель 140УД10 в качестве входного, «раскачивающего» более мощную микросхему, каскада. Микросхему A2030H и её характеристики мы нашли в литературе [5]. Будем использовать стандартную схему включения микросхемы.

Микросхему 140УД10 также будем включать в стандартном неинвертирующем включении (см [6]):

 


Справочные параметры микросхем:

А2030Н:                                                       140УД10

Сопротивление нагрузки (Rн=13 Ом) в нашем случае больше чем номинальная нагрузка второго каскада. По графику, представленному в техническом описании, определим максимальную мощность, которую может выдать, на данную нагрузку, микросхема А2030Н при напряжении питания ±12 В.

Получим: Это значение выше, чем заданное в техническом задании, следовательно, по этому параметру микросхема подходит.

Одна микросхема А2030Н способна обеспечить усиление в 30 дБ в заданной полосе частот.

Переведём коэффициент усиления в децибелах в коэффициент усиления по напряжению:

Это максимальное усиление, которое можно получить от одной микросхемы, так как оно меньше того, что нам надо (Ku=325), то используем каскадное соединение двух микросхем А2030Н и 140УД10.

Рассмотрим предназначение каждого элемента в стандартной схеме включения А2030Н:

R1 – обеспечивает отрицательную обратную связь;

R2 – определяет коэффициент усиления каскада по формуле:

R3 – определяет входное сопротивление каскада;

С1 – разделительная ёмкость на входе каскада;

С2 – разделительный конденсатор на инвертирующем входе;

С3, С4 – ёмкости, сглаживающие пульсации питания;

D1, D2 – диоды, защищающие от переполюсовки питания и выбросов выходного сигнала. Эти диоды можно заменить аналогами (КД243 или КД247 с любым буквенным индексом).

Регулировку усиления будем производить изменением сопротивления в цепи обратной связи (резистор R4 второго каскада).

2.2 Расчет элементов первого каскада:

 Выберем его имея в виду, что:

Выберем таким, чтобы выполнялось ранее написанное условие:


 .

Поскольку от источника сигнала мы получаем меньше половины напряжения сигнала, мы должны проверить, сможем ли мы получить надлежащее усиление на данных микросхемах на двух каскадах:

при заданном К и Квц усиление каскадов К1,К2=30. Такой коэффициент усиления могут выдать обе этих микросхемы в заданном диапазоне частот.

Из условия протекания малых токов смещения

Исходя из выражения, что коэффициент усиления каскада равен:

 и коэффициент усиления для первого каскада возьмём равным

Подставив полученное выражение в формулу для R3, получим:

Зная номинал R3, найдём:


Расчёт конденсатора С1 производится аналогично разделительной ёмкости в транзисторном варианте:

С2 – Рассчитаем из заданной нижней граничной частоты, причём взяв её с запасом в меньшую сторону (ёмкость конденсатора увеличиваем). Частоту можно выразить через постоянную времени RC – цепи.

Так как мы условились увеличить ёмкость, то возьмём её, чтобы не плодить новые номиналы ёмкостей, равной ёмкости

С1. .

Для балансировки нуля на микросхеме 140УД10 имеются два выхода. Сама цепь балансировки представляет из себя два резистора, подстроечный и постоянный (R4 и R5) следующих номиналов:


2.3 Расчет элементов второго каскада

Сопротивлениевыберем также исходя из условия, что оно должно быть на порядок меньше RвхОУ.

Из условия протекания малых токов смещения

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

рефераты
Новости