рефераты рефераты
Главная страница > Курсовая работа: Технологии цифровой связи  
Курсовая работа: Технологии цифровой связи
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Технологии цифровой связи

Распределение ошибок в комбинациях различной длины оценивает и вероятность комбинаций длиной n c t наперед заданными ошибками.

.                                   (3)

Сравнение результатов вычисленных значений  вероятностей по формулам (2) и (3) показывает, что группирование ошибок приводит к увеличению числа кодовых комбинаций, пораженных ошибками большей кратности. Также можно заключить, что при группировании ошибок уменьшается число искаженных кодовых комбинаций, заданной длины n. Это понятно также из чисто физических соображений. При одном и том же числе ошибок пакетирование приводит к сосредоточению их на отдельных комбинациях (кратность ошибок возрастает), а число искаженных кодовых комбинаций уменьшается.

1.2 Виды модуляции

Сигналы формируются путём изменения тех или иных параметров физического носителя в соответствии с передаваемым сообщением. Этот процесс (изменения параметров носителя) принято называть модуляцией.

Общий принцип модуляции состоит в изменении одного или нескольких параметров несущего колебания (переносчика) f (t,, ...) в соответствии с пе­редаваемым сообщением. Так если в качестве переносчика выбрано гармоническое колебание  то можно образовать три вида модуляции: амплитудную (AM), частотную (ЧМ) и фазовую (ФМ).


Рисунок 1 -  Формы сигналов при двоичном коде для различных видов дискретной модуляции

1.2.1 Амплитудная модуляция

Амплитудная модуляция состоит в пропорциональном первичному сигналу x(t) изменении амплитуды переносчика .

В простейшем случае гармонического сигнала  амплитуда

.                                                    (4)

В результате имеем АМ колебание:

.                                    (5)


      

Рисунок 2 – Графики колебаний .  

Рисунок 3 - Спектр АМ колебания

На рисунке 2 изображены графики колебаний . Огибающая АМ колебания соответствует выражению (3) Максимальное отклонение амплитуды  от  представляет амплитуду огибающей ; согласно (3) . Отношение амплитуды огибающей к амплитуде несущего (немодулированного) колебания

.                                                               (6)


называется коэффициентом модуляции. Обычно . Коэффициент модуляции, выраженный в процентах, т. е. (m 100)%, называют глубиной модуляции. Коэффициент модуляции пропорционален амплитуде модулирующего сигнала.

Используя (5), выражение (4) записывают в виде

.                                               (7)

Для определения спектра АМ колебания раскроем скобки в выражении (6):

.     (8)

Согласно (7) АМ колебание является суммой трех высокочастотных гармонических колебаний близких частот (поскольку или ):

а) колебания несущей частоты f0 с амплитудой U0,

б) колебания верхней боковой частоты f0+F с амплитудой ,

в) колебания нижней боковой частоты f0-F с такой же амплитудой .

Спектр АМ колебания (7) приведен на рисунке 3. Ширина спектра равна удвоенной частоте модуляции: ∆fAM=2F. Амплитуда несущего колебания при модуляции не изменяется; амплитуды колебании боковых частот (верхней и нижней) пропорциональны глубине модуляции, т. е. амплитуде Х модулирующего сигнала. При m=1 амплитуды колебаний боковых частот достигают половины несущей (0,5U0).

Несущее колебание никакой информации не содержит, и в процессе модуляции оно не меняется. Поэтому можно ограничиться передачей только боковых полос, что и реализуется в системах связи на двух боковых полосах (ДБП) без несущей. Больше того, поскольку каждая боковая полоса содержит полную информацию о первичном сигнале, можно обойтись передачей только одной боковой полосы (ОБП). Модуляция, в результате которой получаются колебания одной боковой полосы, называется однополосной (ОМ).

Очевидными достоинствами систем связи ДБП и ОБП являются возможности использования всей мощности передатчика на передачу только боковых полос (двух или одной) сигнала, что позволяет повысить дальность и надежность связи. При однополосной модуляции, кроме того, вдвое уменьшается ширина спектра модулированного колебания, что позволяет соответственно увеличить число сигналов, передаваемых по линии связи в заданной полосе частот.

1.2.2 Угловая модуляция

Рассмотрим особенности обоих видов угловой модуляции: фазовой и частотной.

Фазовая модуляция заключается в пропорциональном первичному сигналу x(t) изменении фазы φ переносчика

.                                                             (9)

где а — коэффициент пропорциональности. Амплитуда колебания при фазовой модуляции не изменяется, поэтому аналитическое выражение ФМ колебания

.                                                     (10)


Если модуляция осуществляется гармоническим сигналом x(t) =Xsin Ωt, то мгновенная фаза

.                                           (11)

Первые два слагаемых (10) определяют фазу немодулированного колебания, третье — изменение фазы колебания в результате модуляции.

Фазомодулированное колебание наглядно характеризуется векторной диаграммой рисунок 4, построенной на плоскости, вращающейся по часовой стрелке с угловой частотой w0. Немодулированному колебанию соответствует неподвижный вектор U0. Фазовая модуляция заключается в периодическом с частотой Ω повороте вектора U относительно U0 на угол ∆φ(t)=aXsinΩt. Крайние положения вектора U обозначены U’ и U’’. Максимальное откло­нение фазы модулированного колебания от фазы немодулированного колебания                

M=∆φmax=aX.                                                         (12)

называется индексом модуляции. Индекс модуляции М пропорционален амплитуде Х модулирующего сигнала. Он в такой же степени характеризует ФМ колебание, как коэффициент модуляции т — AM колебание.


Рисунок 4 - Векторная диаграмма фазомодулированного колебания

Используя (11), перепишем ФМ колебание (9) как

.                                      (13)

Мгновенная частота ФМ колебания

.                                               (14)

Таким образом, ФМ колебание в разные моменты времени имеет различные мгновенные частоты, отличающиеся от частоты несущего колебания  на величину , что позволяет рассматривать ФМ колебание как модулированное по частоте.

Наибольшее отклонение частоты ω от ω0 называется девиацией частоты ∆ωД. Согласно (13):

∆ωд =MΩ или ∆fД =MF.                                              (15)

Частотная модуляция заключается в пропорциональном первичному сигналу x(t) изменении мгновенной частоты переносчика:


ω=ω0+ax(t).                                                     (16)

где а — коэффициент пропорциональности. Мгновенная фаза ЧМ колебания: .

Аналитическое выражение ЧМ колебания с учетом постоянства амплитуды можно  записать в виде:

.                                         (17)

В простейшем случае модуляции гармоническим колебанием  мгновенная частота , где — девиация частоты, т. е. максимальное ее отклонение от несущей частоты ω0, вызванное модуляцией. Аналитическое выражение этого ЧМ колебания: .

Страницы: 1, 2, 3, 4, 5

рефераты
Новости