рефераты рефераты
Главная страница > Курсовая работа: Системы технологий электроники и приборостроения. Основные технологические процессы, используемые на предприятиях комплекса  
Курсовая работа: Системы технологий электроники и приборостроения. Основные технологические процессы, используемые на предприятиях комплекса
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Системы технологий электроники и приборостроения. Основные технологические процессы, используемые на предприятиях комплекса

4.2 Технологический маршрут

Технологический маршрут — это последовательность технологических операций обработки полупроводниковых пластин, применяемых для изготовления данного типа ПП или ИМС. Документом, содержащим описание маршрута, -является маршрутная карта. Она позволяет судить о перемещении изготовляемого прибора по всем операциям, указывает оборудование, материалы, трудовые нормативы и средства контроля. Проведение каждой технологической операции'регламентируется операционной картой, содержащей описание операции с указанием технологических режимов изготовления структуры или прибора и технологической оснастки. Технологические процессы изготовления различных ПП и ИМС многообразны. Можно выделить ряд общих технологических операций и примерно одинаковую их последовательность. Типовым маршрутом изготовления пленарного ПП или ИМС определяется последовательность из ряда основных операций.

1. Подготовка пластин. Исходные полупроводниковые пластины— эпитаксиальные структуры, например я-я+-типа, или монокристаллические подложки с электропроводностью п- или р-типа, полученные в качестве полуфабриката с завода-изготовителя, подвергают очистке, промывке, травлению с целью удаления с поверх-1 ности пластин загрязнений и частиц пыли. Слой с электропроводностью я-типа в эпитаксиальной я-я+-структуре составит в будущих транзисторах коллекторную область (рис. 1.1, а)..

2. Создание топологического рисунка. Чтобы в эпитаксиальной структуре сформировать области с электропроводностью р-типа, необходимо обеспечить проведение локальной диффузии через окна — отверстия в защитной маске. Размеры этих окон задают с помощью процесса фотолитографии. Маской, препятствующей диффузии, служит пленка диоксида кремния. Выращивание ее является необходимой стадией планарного процесса. Пленка диоксида 7 кремния Si02 толщиной 0,3—1,0 мкм надежно предохраняет структуру от воздействия многих внешних факторов и диффузии примесей. На пленку наносят слой фоторезиста — фотоэмульсии, экспонируют его ультрафиолетовым светом через фотошаблон, содержащий множество идентичных изображений баз транзисторов с ваданной конфигурацией и размерами. Засвеченные участки фоторезиста проявляются и обнажившуюся пленку Si02 удаляют. Окно, вскрытое для базовой диффузии, показано на рис. 1.1, б.

3. Получение р-п-перехода база— коллектор. Для прецизионной дозировки количества вводимой в кристалл примеси — атомов бора при создании области р-базы — используют процесс ионной имплантации, заключающийся во внедрении ускоренных ионов в поверхность кристалла. Слой фоторезиста служит защитной маской, так как ионы, внедренные в фоторезист, не достигают поверхности диоксида. Чтобы сформировать базовую область и р-п-пере-ход коллектор — база на требуемой глубине, используют последующую диффузионную разгонку внедренных атомов бора. Ее проводят в окислительной среде при высоких температурах. В результате формируется область базы с глубиной 2—3 мкм и на поверхности базовой области наращивается пленка Si02 толщиной 0,3—0,5 мкм (рис. 1.1, в).

4. Получение p-n-nepexoda эмиттер — база. Вначале формируют топологический рисунок эмиттерных областей, используя процесс фотолитографии по пленке Si02 над базовой областью. Одновременно вскрывают окна, задающие конфигурацию коллекторных 8 контактов. Фоторезист удаляют и ведут диффузию фосфора с высокой концентрацией на малую глубину (до 1—1,5 мкм) (рис. 1.1, г).

5. Контактная металлизация. Для присоединения к областям эмиттера, базы и коллектора электрических выводов необходимо металлизировать поверхности контактов. Предварительно проводят фотолитографическую обработку структуры для удаления пленки диоксида с нужных участков. Затем с помощью термического испарения в вакууме на всю поверхность пластины напыляют слой металла (например, алюминия) толщиной около 1 мкм, по которому проводят еще один процесс фотолитографии для удаления лишнего металла между областями контактов. Структура с контактной металлизацией показана на рис. 1.1, д. При изготовлении ИМС аналогичным образом создают тонкопленочные пассивные элементы— резисторы, конденсаторы, а также осуществляют коммутацию транзисторов.

6. Сборка и герметизация. Пластина содержит от нескольких сотен до десятков тысяч отдельных транзисторов. Ее разрезают на отдельные структуры, называемые на данном этапе кристаллами. На рис. 1.1, е показана топология такого кристалла с контактной металлизацией. Кристалл напаивают на кристаллодержатель, осуществляют разводку — подсоединение электрических выводов к контактам базы, эмиттера и коллектора — и герметизируют, помещая в металлический корпус или заливая пластмассой.

7. Испытания приборов. Для оценки параметров и надежности приборов до их поступления в отдел технического контроля производят электрические, климатические и механические испытания. Они важны для правильной информации о качестве и надежности приборов. Помимо этого каждая технологическая операция сопровождается контролем качества обработки, например измерением глубины диффузии, толщины эпитаксиального слоя, удельного или поверхностного сопротивления. После того как в структуре созданы ?-?-переходы, производят контроль электрических параметров— напряжения пробоя, тока утечки, емкости. В технологическом маршруте предусмотрены специальные контрольные карты.

Рассмотренная последовательность операций характерна для изготовления планарно-эпитаксцального транзистора. В основе классификации приборов лежит технологической метод создания активных областей структуры. По этому признаку различают сплавные, диффузионные, эпитаксиальные, имплантационные дискретные ПП, а также их модификации, например сплавно-диффу-зионные и др. Большинство современных приборов изготовляют на эпитаксиальных структурах. Активные области формируют с помощью ионной имплантации и диффузии. МОП-транзисторы изготовляют на монокристаллических подложках без эпитаксиального слоя методами планарной. технологии. Непланарные диффузионные и эпитаксиальные переходы используют при изготовлении силовых Диодов и транзисторов.

Степень интеграции.

Были предложены следующие названия микросхем в зависимости от степени интеграции (указано количество элементов для цифровых схем):

Малая интегральная схема (МИС) — до 100 элементов в кристалле.

Средняя интегральная схема (СИС) — до 1000 элементов в кристалле.

Большая интегральная схема (БИС) — до 10000 элементов в кристалле.

Сверхбольшая интегральная схема (СБИС) — до 1 миллиона элементов в кристалле.

Ультрабольшая интегральная схема (УБИС) — до 1 миллиарда элементов в кристалле.

Гигабольшая интегральная схема (ГБИС) — более 1 миллиарда элементов в кристалле.

В настоящее время название ГБИС практически не используется (например, последние версии процессоров Pentium 4 содержат пока несколько сотен миллионов транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС, считая УБИС его подклассом.

Технология изготовления.

Полупроводниковая микросхема — все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия).

Плёночная микросхема — все элементы и межэлементные соединения выполнены в виде плёнок:

·  толстоплёночная интегральная схема;

·  тонкоплёночная интегральная схема.

Гибридная микросхема — кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.

Вид обрабатываемого сигнала.

Аналоговые

Цифровые

Аналого-цифровые

Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

Цифровые микросхемы — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем ТТЛ при питании +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В соответствует логической единице. Для микросхем ЭСЛ-логики при питании −5,2 В: логическая единица — это −0,8…−1,03 В, а логический ноль — это −1,6…−1,75 В. Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов. По мере развития технологий получают всё большее распространение.

Рис. 1 Информационно-логическая модель проектирования радиоэлектронных устройств

Рис. 2 Детализация блока «Разработка структуры РЭУ с применением комплексного моделирования»


Рис. 3. Детализация блока «Комплексное моделирование физических процессов в РЭУ»

Рис. 4. Детализация блока «Исследование надёжности РЭУ»


Заключение

В результате проводимых мероприятий по развитию и реформированию радиоэлектронного комплекса должна быть создана его структура, обеспечивающая устойчивое эффективное функционирование предприятий. При этом должны быть, безусловно, обеспечены условия выполнения действующей и разрабатываемой Государственных программ вооружения, программ военно-технического сотрудничества с иностранными государствами, федеральных и межгосударственных целевых программ. Должны получить развитие перспективные наукоемкие технологии для разработки и производства конкурентоспособной на внутреннем и внешнем рынках высокотехнологичной продукции двойного и гражданского назначения. От наших согласованных действий, будет зависеть не только развитие радиоэлектронного комплекса, но и в целом обеспечение национальных интересов России.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8

рефераты
Новости