рефераты рефераты
Главная страница > Курсовая работа: Расчет выпрямительного диффузионного диода  
Курсовая работа: Расчет выпрямительного диффузионного диода
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Расчет выпрямительного диффузионного диода

Для нахождения UFM при выбранном значении диаметра выпрямительного элемента по формуле (1.4.5) рассчитывается активная площадь структуры, а затем определяется максимальное значение плотности тока в прямом направлении

. (1.5.1)

Далее исходя из ВАХ диода единичной площади по (1.4.7) находится значение прямого падения напряжения UFM. К нему можно добавить падение напряжения на омических контактах, не учитываемое в вышеуказанных выражениях. Для силовых выпрямительных диодов оно составляет 0,05 В.

По обратному току ограничивающим параметром обычно является повторяющийся импульсный обратный ток диода IRRM — наибольшее мгновенное значение обратного тока, обусловленное повторяющимся импульсным обратным напряжением URRM. Измеряется IRRM при максимально допустимой температуре перехода Tjm.

Обратный ток реального диода состоит из нескольких составляющих:


IR = IS + Ig + IУТ + IПОВ + IКАН, (1.5.2)

где IS — ток насыщения; Ig — ток термогенерации; IУТ — ток утечки по поверхности; IПОВ — поверхностный ток; IКАН — канальный ток.

Некоторые из них, такие, как IУТ и IКАН аналитически не рассчитываются. Поверхностный ток содержит трудно определяемую скорость поверхностной рекомбинации. Поэтому при расчете обратного тока обычно ограничиваются двумя составляющими — током насыщения и генерационным током.

Ток насыщения — это ток, обусловленный носителями заряда, экстрагируемыми обратносмещённым р — n-переходом из базовых областей. Наиболее общее выражение для плотности тока насыщения, имеет вид:

. (1.5.3)

где ni-собственная концентрация,  – диффузионная длина.

В диффузионных р — n-переходах обычно диффузионная область получается значительно сильнее легированной, чем другая базовая область, представляющая собой исходный материал. В этом случае в выражении для плотности тока насыщения одной составляющей (электронной для р+ - n-перехода и дырочной для n+ — p-перехода) можно пренебречь.

Температурная зависимость параметров, входящих в (1.5.3) представлена ниже.

 , (1.5.4)


, (1.5.5)

, (1.5.6)

где Tn=T/300; T- температура по шкале Кельвина.

Плотность генерационного тока, как правило, вычисляется в предположении, что энергетические уровни генерационно-рекомбинационных центров находятся вблизи середины запрещенной зоны:

. (1.5.7)

где l(URRM) — ширина области объемного заряда при повторяющемся импульсном обратном напряжении.

Для экспоненциального р — n-перехода ширина области объемного заряда может быть найдена по формулам [1]:

при l > 4λ, (1.5.8)

при l ≤ 20λ. (1.5.9)

Если расширение области объемного заряда в базу ограничивается сильнолегированной n+ или р+ - областью то после определения l следует вычислить распространение области объемного заряда в базовые области по формулам:


, (1.5.10)

. (1.5.11)

И если ln при напряжении URRM окажется больше dn (см. рисунок 1.4.1 ), то ширину области объемного заряда следует найти по формуле

, (1.5.12)

Генерационное время жизни τg обычно принимается равным времени жизни носителей заряда в базовых областях. Если эти значения различаются, то в качестве τg берется среднее геометрическое от времени жизни неосновных носителей заряда в базовых областях

. (1.5.13)

После определения плотностей тока насыщения и генерационного тока рассчитывается повторяющийся импульсный обратный ток диода

. (1.5.14)

Площадь S, входящая в это выражение, в случае выпрямительного элемента с фаской отличается от SАКТ для прямого направления. Обратный ток диода формируется в области объемного заряда, и в качестве S необходимо брать площадь структуры в плоскости металлургического перехода (пунктирная линия на рисунке 1.4.2), что практически совпадает с площадью большего омического контакта:

. (1.5.15)


2. РАССЧЕТНАЯ ЧАСТЬ

2.1 Расчет удельного сопротивления исходного кристалла

В качестве исходного материала выбираем кремний n-типа проводимости.

Выбор удельного сопротивления исходного кристалла производится то напряжению лавинного пробоя.

Напряжение лавинного пробоя определяется по заданному значению повторяющегося импульсного обратного напряжения Urrm . В соответствии с формулой (1.2.1), задавшись коэффициентом запаса k = 0.80, найдем напряжение лавинного пробоя:

В.

Так как мы имеем дело с диффузионным p-n – переходом, распределение примеси в котором аппроксимируется экспонентой, то следует уточнить напряжение лавинного пробоя. Для этого сначала по формуле (1.2.9б) в первом приближении определим ширину области объемного заряда при напряжении лавинного пробоя:

мкм.

Далее, выбрав λ = 8 и сравнив lB с 5λ, из (1.2.8б) в первом приближении определим значение концентрации легирующей примеси в исходном кристалле:

см-3.


Имея значения параметров lB, λ и N0 в первом приближении, по выражению (1.2.7) можно уточнить напряжение лавинного пробоя экспоненциального p—n-перехода.

В.

Определим расхождение значения напряжения лавинного пробоя полученного по (1.2.1) с тем же полученным по (1.2.7):

Учитывая то, что расхождение меньше 3%, то расчет на этом можно закончить и установить удельное сопротивление ρ исходного кристалла. По графику зависимости удельного сопротивления от концентрации легирующей примеси [2], находим, что для N0 = 5,69×1013 – ρ = 70 Ом×см.

2.2 Расчет геометрических размеров слоев выпрямительного элемента

Расчет геометрических размеров слоев диффузионного выпрямительного элемента проведем, используя приближение экспоненциального перехода.

Из рисунка 1.2.1 видно, что слоями нашей конструкции выпрямительного элемента являются p+ n и n+ слои, для расчета которых необходимо определить xj, dn и xjn.

Глубину залегания p - n перехода xj можно рассчитать используя выражение (1.3.1) откуда:


мкм, Примем xj = 55мкм.

Тогда из (1.2.3) можно определить параметры диффузии Dt:

см-2.

Далее, для определения dn найдем расширение ООЗ в n-область по (1.3.2)

мкм.

Так как lnB много больше 150 мкм то расширение ООЗ в базу ограничим и примем:

мкм.

Для выпрямительных диодов xjn обычно составляет 30-50 мкм.

Выберем xjn= 40 мкм.

Теперь по (1.3.3) определим общую толщину выпрямительного элемента

W = xj + хjn + dn = 55 + 40 + 175 = 270 мкм.

2.3 Расчет диаметра выпрямительного элемента и выбор конструкции корпуса диода

Расчет диаметра выпрямительного элемента производится исходя из средней мощности прямых потерь в диоде и максимально возможной отводимой мощности, обеспечиваемой выбранной конструкцией корпуса диода. Для определения диаметра выпрямительного элемента по критерию (1.4.3) необходимо вычислить среднюю мощность прямых потерь в диоде по (1.4.4).

Прежде построим прямую ВАХ диода единичной площади. Для этого воспользуемся формулой (1.4.7), но следует определить сначала по (1.4.8) и (1.4.9) входящие в него компоненты (μP(Si) = 470 см2 /(В×с), ni = 1,45×1010 см-3):

мкс.

см.

А/см2.

Задавшись плотностью прямого тока jF по (1.4.7) определим падение напряжения в прямом направлении VF. Полученные результаты занесем в таблицу.

Таблица – 2.3.1

jF,А/см2

10 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

VF,В

0,88 1,00 1,09 1,16 1,23 1,29 1,35 1,41 1,47 1,53 1,59 1,65 1,70 1,76 1,82 1,87 1,93 1,98 2,04 2,09 2,15

Страницы: 1, 2, 3, 4, 5, 6

рефераты
Новости