рефераты рефераты
Главная страница > Курсовая работа: Расчет и проектирование МДП-транзистора  
Курсовая работа: Расчет и проектирование МДП-транзистора
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Расчет и проектирование МДП-транзистора

 

1.3    Принцип работы МДП-транзистора

Физической основой работы полевого транзистора со структурой металл–диэлектрик–полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод - затвор. В зависимости от знака и величины приложенного напряжения могут быть четыре состояния области пространственного заряда (ОПЗ) полупроводника – обогащение, обеднение, слабая и сильная инверсия. Полевые транзисторы в активном режиме могут работать только в области слабой или сильной инверсии, т. е. в том случае, когда инверсионный канал между истоком и стоком отделен от квазинейтрального объема подложки областью обеднения [11].

Полевой транзистор относится к типу приборов, управляемых напряжением. Обычно электрод истока является общим, и относительно его определяются величина и знак прикладываемого напряжения и протекающего тока. Напряжение на затворе МДП-транзистора обозначается значком VG, на стоке транзистора - VDS, на подложке - VSS. Ток, протекающий между истоком и стоком, обозначается IDS, ток в цепи «затвор – канал» – IG. Для полевых транзисторов с изолированным затвором ток затвора пренебрежимо мал, составляет величины пикоампер. По этой причине мощность, расходуемая на реализацию транзисторного эффекта в первичной цепи, практически нулевая [5].

Рисунок 1.5 - МДП-транзистор с индуцированным каналом в равновесных условиях:

а) напряжение на затворе отсутствует VG = 0;

б) напряжение на затворе больше порогового напряжения VG > VT


На рис. 1.5 показана схема МДП-транзистора с индуцированным p-каналом в равновесных условиях (VDS = 0) при нулевом напряжении на затворе и при напряжении на затворе выше порогового напряжения.

В области инверсии концентрация неосновных носителей заряда в инверсионном канале выше, чем концентрация основных носителей в объеме полупроводника. Напряжение на затворе VG, при котором происходит формирование инверсионного канала, называется пороговым напряжением и обозначается VT. Изменяя величину напряжения на затворе VG в области выше порогового напряжения, можно менять концентрацию свободных носителей в инверсионном канале и тем самым модулировать сопротивление канала Ri. Источник напряжения в стоковой цепи VDS вызовет изменяющийся в соответствии с изменением сопротивления канала Ri ток стока IDS, и тем самым будет реализован транзисторный эффект. Напомним, что транзисторный эффект заключается в изменении тока или напряжения во вторичной цепи, вызванном изменениями тока или напряжения в первичной цепи. Отметим, что ток в цепи «исток - канал - сток» IDS обусловлен только одним типом носителей, то есть действительно МДП-транзистор является униполярным прибором. Поскольку области истока и стока сильно легированы, то они не оказывают влияния на ток канала, а только обеспечивают контакт к области канала [8].

Таким образом, МДП-транзистор является сопротивлением, регулируемым внешним напряжением. К нему даже в большей степени, чем к биполярным приборам, подходит историческое название «транзистор», так как слово «transistor» образовано от двух английских слов - «transfer» и «resistor», что переводится как «преобразующий сопротивление» [16].

 

1.4 Выбор знаков напряжений в МДП-транзисторе

Электрод истока является общим и относительно его определяются величина и знак прикладываемого напряжения и протекающего тока. Рассмотрим на примере n-канального МДП-транзистора с индуцированным каналом, каким образом выбираются величина и знак напряжения на затворе, стоке и подложке, обеспечивающих работу МДП-транзистора в активном режиме.

Для МДП-транзистора с индуцированным n-каналом при нулевом напряжении на затворе VG = 0 канал между истоком и стоком отсутствует. Для формирования канала необходимо подать напряжение на затвор VG такого знака, чтобы на поверхности полупроводника сформировался инверсионный слой. Для n-канального транзистора (полупроводниковая подложкаp-типа) знак напряжения VG в этом случае должен быть положительным. Напряжение на затворе VG, при котором происходит формирование инверсионного канала, называется пороговым напряжением и обозначается VT. Следовательно, величина напряжения на затворе VG в активной области должна быть больше, чем значение порогового напряжения: 0 < VT < VG.

Напряжение, поданное на сток VDS, вызывает движение электронов в инверсионном слое между истоком и стоком. С точки зрения транзисторного эффекта безразлично, в каком направлении в канале будут двигаться носители. Но в то же время напряжение VDS, приложенное к стоку, - это напряжение, приложенное к стоковому n+-p-переходу. При положительном знаке VDS > 0 это соответствует обратному смещению стокового n+-p-перехода, а при отрицательном знаке VDS < 0 это соответствует прямому смещению p-n-перехода «сток - подложка». В случае прямого смещения p-n-перехода «сток - подложка» в цепи стока будет течь дополнительно к току канала еще и большой ток прямосмещенногоp-n-пе-рехода, что затруднит регистрацию тока канала.

В случае обратного смещения p-n-перехода «сток - подложка» паразитный ток будет составлять наноамперы и будет пренебрежимо мал. Таким образом, знак напряжения на стоке VDS нужно выбирать так, чтобы стоковый переход был смещен в обратном направлении. Для n-канальных транзисторов это условие соответствует VDS > 0, а для p-канальных транзисторов VDS < 0. На рис. 1.6 показана схема p-канального МДП-транзистора в области плавного канала [6].

Рисунок 1.6 - Схема p-канального МДП-транзистора в области плавного канала.

Напряжение, подаваемое на подложку VSS, управляет током в канале через изменение заряда в области обеднения QB, или, что то же самое, через изменение порогового напряжения VT. Для эффективного увеличения ширины области обеднения, следовательно, заряда в области обеднения необходимо подавать обратное смещение на индуцированный электронно-дырочный переход «канал - подложка». Для n-канальных транзисторов это условие соответствует отрицательному знаку напряжения на подложке VSS < 0, а для p-канальных транзисторов - положительному знаку напряжения VSS > 0. На рис. 1.7 приведена схема p-канального МДП-транзистора в области плавного канала при наличии управляющего напряжения на подложке [5].

Рисунок 1.7 - Схема p-канального МДП-транзистора в области плавного канала при наличии напряжения на подложке.

1.5 Характеристики МДП-транзистора в области плавного канала

Рассмотрим полевой транзистор со структурой МДП, конфигурация и зонная диаграмма которого приведены на рис. 1.8. Координата z направлена вглубь полупроводника, y - вдоль по длине канала и х - по ширине канала.

Получим вольт-амперную характеристику такого транзистора при следующих предположениях:

1.  Токи через р-n-переходы истока, стока и подзатворный диэлектрик равны нулю.

2.  Подвижность электронов μn постоянна по глубине и длине L инверсионного канала и не зависит от напряжения на затворе VGS и на стоке VDS.

3.  Канал плавный, то есть в области канала нормальная составляющая электрического поля Ez существенно больше тангенциальной Еу [15].


Рисунок 1.8 - Схема МДП-транзистора для расчета токов в области плавного канала и зонная диаграмма в равновесных условиях

Ток в канале МДП-транзистора, изготовленного на подложке р-типа, обусловлен свободными электронами, концентрация которых n(z). Электрическое поле Еу обусловлено напряжением между истоком и стоком VDS. Согласно закону Ома, плотность тока [5].:

                       (1.2)

где q - заряд электрона, μn - подвижность электронов в канале, V- падение напряжения от истока до точки канала с координатами (x, y, z).

Проинтегрируем (1.2) по ширине x и глубине z канала. Тогда интеграл в левой части (1.2) дает нам полный ток канала IDS, а для правой части получим:

                     (1.3)


Величина есть полный заряд электронов в канале на единицу площади:

Тогда:

                              (1.4)

Найдем величину заряда электронов Qn. Для этого запишем уравнение электронейтральности для зарядов в МДП-транзисторе на единицу площади в виде [3]:

Qm= Qox + Qn+ QB.                                    (1.5)

Согласно (1.5), заряд на металлическом электроде Qm уравновешивается суммой зарядов свободных электронов Qn и ионизованных акцепторов QB в полупроводнике и встроенного заряда в окисле Qox. [10].


Рисунок 1.9 - Расположение зарядов в МДП-транзисторе.

На рис. 1.9 приведена схема расположения этих зарядов. Из определения геометрической емкости окисла Сox следует, что полный заряд на металлической обкладке МДП-конденсатора Qm равен:

Страницы: 1, 2, 3, 4, 5

рефераты
Новости