рефераты рефераты
Главная страница > Курсовая работа: Расчет преобразователя частоты  
Курсовая работа: Расчет преобразователя частоты
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Расчет преобразователя частоты

По виду нелинейного элемента:

- диодные ПЧ;

- транзисторные ПЧ;

- интегральные ПЧ.

По числу нелинейных элементов в ПЧ:

- простые (один НЭ);

- балансные (два НЭ);

- кольцевые (четыре НЭ).


2. ВИДЫ СХЕМ ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ1

Известно большое количество различных схем преобразователей частоты, каждая из которых может выбираться в зависимости от требований к проектируемому радиоприемнику.

Общими требованиями к преобразователям частоты являются: возможно, больший коэффициент передачи при преобразовании; минимальный уровень шумов, вносимых преобразователем в тракт приемника; высокая стабильность работы гетеродина; минимальное просачивание энергии гетеродина в антенну.

В качестве смесительных элементов преобразователей частоты в современных приемниках километровых, гектометровых, дециметровых и метровых (КГД и М) волн применяются электронные приборы с резистивной и реактивной нелинейными проводимостями. К первой группе приборов относятся транзисторы (биполярные и полевые) и различные высокочастотные диоды, работающие на прямой ветви вольт-амперной характеристики, а ко второй — параметрические диоды. В последних используется вольт-фарадная характеристика.

Преобразователи частоты на биполярных транзисторах могут выполняться на одном триоде, т. е. с совмещенным гетеродином, и на двух триодах, в которых один выполняет функции смесителя, а другой — гетеродина. В случае использования автономного гетеродина легче подобрать оптимальные режимы работы смесителя и гетеродина, что определяет использование преобразователей с отдельным гетеродином в приемниках повышенного класса.

Наиболее распространенными схемами преобразователей частоты на биполярных транзисторах являются схемы, в которых принимаемый сигнал подается в цепь базы, т. е. когда для напряжения сигнала схема смесителя является схемой с общим эмиттером.

В этом случае, так же как и в усилительных схемах, получается больший коэффициент передачи преобразователя.

Напряжение гетеродина может подаваться как в цепь базы (смеситель по отношению к этому напряжению работает по схеме с общим эмиттером), так и в цепь эмиттера, что соответствует схеме с общей базой. При подаче напряжения гетеродина в цепь базы требуется при прочих равных условиях меньшая мощность, так как входное сопротивление схемы с общим эмиттером больше, чем схемы с общей базой. Однако в первом случае увеличивается взаимосвязь между входным контуром преобразователя (сигнальным) и контуром гетеродина. Известно, что такая взаимосвязь ухудшает стабильность работы гетеродина, затрудняет настройку контуров при их сопряжении, увеличивает просачивание энергии гетеродина в антенну. Когда напряжение гетеродина подается в цепь базы, то связь между гетеродином и смесителем приходится осуществлять через конденсатор с весьма небольшой емкостью.

При подаче напряжения гетеродина в цепь эмиттера не требуется непосредственно связывать между собой контуры гетеродина и сигнала. Однако между этими контурами существует паразитная связь за счет емкости Сэ.в смесительного транзистора. Другим недостатком схемы является влияние внутреннего сопротивления транзистора смесителя на частоту гетеродина. Последнее особенно нежелательно при регулировании усиления смесителя с помощью системы АРУ. Помимо этого, в такой схеме с повышением рабочей частоты увеличивается отрицательная обратная связь по току сигнала, снижающая коэффициент передачи преобразовательного каскада. Перечисленные, недостатки схемы возрастают с увеличением рабочей частоты.

При использовании любой схемы преобразователя частоты уменьшение взаимного влияния настроек гетеродинного и сигнального контуров может быть достигнуто: увеличением промежуточной частоты, т. е. увеличением разности частот гетеродина и сигнала; переходом к использованию высших гармоник частоты гетеродина; введением буферного каскада между гетеродином и смесителем. Последнее особенно удобно при работе на гармониках, когда буферный каскад используется в режиме умножения.

Следует заметить, что на первом этапе развития транзисторной техники биполярные транзисторы широко использовались как смесители. Однако они имеют вольт-амперную характеристику, далекую от идеальной (квадратичной), и в настоящее время вытесняются полевыми транзисторами.

Полевые транзисторы имеют вольт-амперную характеристику, близкую к квадратичной кривой, поэтому крутизна характеристики их изменяется в зависимости от напряжения на затворе по закону, близкому к линейному. Линейная зависимость крутизны полевого транзистора позволяет уменьшить нелинейные искажения принимаемого сигнала. Как показывают исследования, полевые транзисторы обеспечивают коэффициент перекрестной модуляции на 50 дБ ниже, чем при использовании биполярных транзисторов. Кроме того, полевые транзисторы позволяют обеспечить более низкий коэффициент, шума. Их входное сопротивление значительно выше, чем у биполярных.

Если используют полевые транзисторы в качестве смесителей, то они работают обычно с отдельным гетеродином. Напряжение сигнала подается, как правило, на затвор, а напряжение гетеродина может быть подано как на затвор, так и на исток. Влияние способов подачи напряжения гетеродина здесь такое же, как и в преобразователях на биполярных транзисторах.


 

Рисунок 3. Схемы преобразователя: а — со смесителем на полевом МОП-транзисторе; б — с двухзатворным смесителем; в — со смесителем на двух полевых транзисторах; г—на двух транзисторах в другом варианте

На рисунке 3, а показана схема преобразователя со смесителем на полевом МОП-транзисторе. Напряжение гетеродина подается в цепь истока транзисторного смесителя. Другая схема (рисунок 3, б) с двухзатворным смесителем. Здесь напряжение гетеродина и сигнала подаются на разные затворы. Этим достигается хорошая развязка контуров гетеродина и сигнала, а также требуется меньшая амплитуда гетеродина, чем в схеме с обычным МОП-транзистором. Еще большое ослабление связи между упомянутыми контурами обеспечивают схемы рисунок 3, в и г. Как видно из приведенных схем, полевые транзисторы соединены в них последовательно. Изменение крутизны по напряжению на затворе входного транзистора получается за счет изменения проводимости цепи сток—исток дополнительного транзистора при подаче на него напряжения гетеродина.

Для повышения эффективности подавления побочных каналов приема, а также для уменьшения излучения гетеродина через цепь антенны в рассматриваемом диапазоне волн могут применяться смесители на диодах с резистивной проводимостыю — балансные, мостовые и кольцевые.


Рисунок 4. Схемы преобразователя на диодах: а — балансного; б — балансного в другом варианте; в — кольцевого

На рисунке 4, а приведена упрощенная схема балансного диодного преобразователя частоты. В хорошо отсимметрированной схеме балансного преобразователя на его выходе и входе образуются составляющие частотного спектра ωс, ωг ± ωс, 3ωг ± ωс, 5ωг ± ωс,…,в то время как в простом преобразователе, кроме того, 0, ωг, 2ωг, 4ωг, 6ωг … .Отсутствие составляющей ωг в спектре балансного преобразователя частоты уменьшает излучение гетеродина через антенну и шумы в тракте приемника. Другая схема балансного преобразователя частоты показана на рисунке 4, б. По своим электрическим свойствам она не отличается от предыдущей.

Схема кольцевого преобразователя иа диодах дана на рисунке 4, в. В спектре кольцевого преобразователя отсутствуют те же составляющие, что и в балансном, и, кроме того, составляющая с частотой ωс.

В качестве диодов в сложных диодных преобразователях частоты могут применяться точечные, микросплавные, туннельные диоды с резистивной проводимостью, а также более современные диоды, называемые диодами Шоттки.

Последние обеспечивают более низкий коэффициент шума преобразователя, чем точечные, и больший динамический диапазон смесителя.

На рисунке 5 представлена схема смесителя на диодах Шоттки.


Рисунок 5. Схема преобразователя на диодах Шоттки с двумя мостами

Наряду с электронными приборами, работающими на резистивной ветви вольтамперной характеристики, в преобразователях частоты в диапазонах КГД- и М-волн могут применяться нелинейные реактивные приборы. К таким приборам относятся параметрические диоды — варакторы. Это диоды с р—n-переходом, в которых используется зависимость емкости запирающего слоя от напряжения. Такие диоды обычно работают без захода в область прямого тока.

Варакторы обладают сравнительно большой нелинейной емкостью и малыми потерями.

Поскольку в рассматриваемом преобразователе частоты переменным параметром, изменяющимся от напряжения гетеродина, является емкость, такой преобразователь называется емкостным.

Принцип действия преобразователя частоты такой же, как и резистивного. Напряжение гетеродина, действуя на нелинейную емкость параметрического диода изменяет крутизну вольт-фарадной характеристики его, в результате чего на выходе преобразователя образуется широкий спектр частот.

Рассматриваемый преобразователь частоты обладает тем замечательным свойством, что в случае неинвертирующего преобразования, т. е. при к fпр =+ fг коэффициент передачи по мощности преобразователя имеет значение

Kпч м= fпр /fc

т. е. он тем больше, чем больше превышение промежуточной частоты над частотой сигнала.

Так как коэффициент шума преобразователя на параметрических диодах очень мал и его коэффициент усиления по мощности можно сделать достаточно большим, емкостные преобразователи частоты применяются в приемниках с высокой чувствительностью.

Страницы: 1, 2, 3

рефераты
Новости