рефераты рефераты
Главная страница > Курсовая работа: Органические полупроводники  
Курсовая работа: Органические полупроводники
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Органические полупроводники

В исследованиях OLED выделилось два основных направления, одно из которых заложили ученые из Eastman-Kodak. Опубликовав еще в 1987 г. статью Organic Electroluminiscent Diodes, они описали новый класс тонкопленочных устройств на базе органических материалов с электролюминесцентными свойствами, заметно превосходящими все, что было создано в этой области ранее. Предложенная Kodak схема с двумя слоями органики между электродами вместо одного и сегодня остается одним из основных вариантов, используемых для создания OLED-устройств. При этом технологический процесс использует циклы вакуумного испарения (осаждения). В феврале 1999 г. корпорации Sanyo Electric и Eastman-Kodak образовали альянс для разработки и продвижения на рынке OLED-дисплеев. Уже через несколько месяцев они смогли показать работающий прототип полноцветного активно-матричного дисплея.

Другое направление – Polymer LED (PLED) – было заложено в 1989 г., когда профессор Ричард Френд (Richard Friend) вместе с группой химиков научной лаборатории Кембриджского университета открыл светоизлучающие полимеры LEP (Light Emitting Polymer). Вскоре выяснилось, что открытые вещества обладают рядом свойств, которые позволяют разработать на их основе семейство дисплеев нового поколения. Для изучения LEP и создания новых дисплеев была образована компания CDT. Вскоре она нашла инвесторов, и началась разработка первого дисплея, сделанного на основе LEP- или PLED-технологии.

Специалистам из CDT удалось решить ряд проблем, применив, например, специальные методики по производству упорядоченных полимеров, а также использовав новые материалы. Чтобы добиться излучения света, был спроектирован аналог неорганического диода. Он состоял из двух слоев – полифениленвинилена (polyphenylene-vinylene, PPV) и циано-PPV (CN-PPV), размещенных между полупрозрачным электродом (окислы индия и олова), который наносили на подложку стекла, с одной стороны, и металлическим контактом – с другой. Эти материалы – PPV и циано-PPV – являются не только полупроводниками, но и, кроме того, еще и самоизолирующими полимерами. Как показали ученые, CN-PPV хорошо подходит для транспортировки электронов благодаря более низкому положению дна зоны проводимости. Электрические характеристики материалов подобраны так, чтобы электроны из CN-PPV и дырки из PPV собирались вдоль границы контакта слоев, где и происходит их рекомбинация с генерацией фотонов.

На сегодняшний день OLED/PLED-технологиями занимаются несколько десятков компаний и университетов. Новые материалы представляют собой куда более сложные комбинации веществ, чем было возможно на заре этих технологий: новые химические формулы базовых слоев, отдельные обогащающие добавки, отвечающие каждая за свою часть спектра – красную, синюю и зеленую. Ведь как и в традиционных ЭЛТ-дисплеях, OLED-экран представляет собой матрицу, состоящую из комбинаций ячеек трех основных цветов – красного, синего, зеленого. В зависимости от того, какой цвет требуется получить, регулируется уровень напряжения на каждой ячейке матрицы, в результате чего смешением трех образовавшихся оттенков и получается искомый результат.

Итак, структура OLED-ячейки многослойна. Сверху OLED-панели располагается металлический катод, снизу – прозрачный анод. Между ними находится несколько органических слоев, собственно и составляющих светодиод. Один слой является источником дырок, второй – полупроводниковым каналом, третий слой транспортирует электроны и, наконец, в четвертом слое происходит замещение дырок электронами, которое в светоизлучающих полимерах сопровождается световым излучением.

Как и ЖК, OLED-дисплеи бывают активными и пассивными. Последний тип дисплея представляет собой простейший двухмерный массив пикселов в виде пересекающихся строк и колонок. Каждое такое пересечение является OLED-диодом. Чтобы заставить его излучать свет, управляющие сигналы подаются на соответствующую строку и колонку. Чем большее подано напряжение, тем ярче будет светимость пиксела. Напряжение требуется довольно высокое, вдобавок подобная схема, как правило, не позволяет создавать большие экраны, состоящие более чем из миллиона пикселов.

Что касается активной матрицы, то это все тот же двухмерный массив из пересекающихся колонок и линий, но на сей раз каждое из их пересечений представляет собой не только светоизлучающий элемент (или OLED-диод), но и управляющий им тонкопленочный транзистор. Управляющий сигнал посылается уже на него, а он, в свою очередь, "запоминает", какой уровень светимости от ячейки требуется, и пока не получит другую команду, будет исправно поддерживать этот уровень тока. И напряжение в таком случае требуется куда ниже, и ячейка куда быстрее реагирует на изменение ситуации. Обычно здесь используются тонкопленочные полевые транзисторы – TFT (Thin Film Transistor) на базе поликристального кремния.

Благодаря партнерству CDT с корпорацией Seiko-Epson произошло, пожалуй, важнейшее событие в истории развития пластиковых дисплеев. Японцы предложили с помощью модифицированной струйной технологии "печатать" пикселы экрана прямо на управляющих схемах из TFT-транзисторов. Дело в том, что использование пассивно-матричных управляющих схем в сочетании с относительно невысокой скоростью работы полимерных "диодов" приводит к неудовлетворительной инерционности экрана. А достоинства активно-матричной технологии были недостижимы из-за неприменимости фотолитографии к тончайшим полимерным пленкам.

Есть все основания полагать, что под боком у ЖК-технологии развивается очень серьезный конкурент. Действительно, технология OLED часто рассматривается экспертами как потенциальная замена не только для ЖК-мониторов, но и плазменных панелей. Дело в том, что OLED-дисплеи имеют целый ряд существенных преимуществ. Они потребляют меньше энергии, не требуют дополнительной подсветки и при этом обеспечивают повышенную яркость, высокую контрастность и частоту регенерации изображения, видимого к тому же под большими углами обзора. Кроме того, OLED-устройства, согласно утверждениям сторонников этой технологии, имеют меньшее время отклика и поэтому лучше приспособлены для быстроменяющегося изображения.

Немаловажным фактором роста популярности OLED-дисплеев может стать и себестоимость массового производства, которая базируется на тонкопленочных и стандартных литографических технологиях. Дело в том, что такая комбинация может обеспечить низкие затраты и высокую надежность всего производственного процесса. Некоторые эксперты полагают, что при условии массового производства стоимость OLED-экранов будет ощутимо ниже, чем у ЖК-панелей. Немаловажной деталью является также тот факт, что такие мониторы работают при напряжении питания в несколько вольт, имеют очень малую массу и толщину. Все это должно сделать технологию привлекательной для производителей электроники и плоскопанельных экранов. Однако до недавнего времени утверждалось, что уровень развития самой технологии еще не позволяет запустить массовое коммерческое производство. Исключения составляют уже устанавливаемые малые экраны в некоторых моделях сотовых телефонов, цифровых камер и ручных компьютеров.

Из недостатков новой технологии стоит отметить относительно низкое "время жизни" (lifetime) излучающих полимеров. Самые большие проблемы возникли с материалами, излучающими синий свет. Сначала они могли работать вообще не дольше тысячи часов, что было явно неприемлемо для практического применения. Достигнутые успехи на сегодняшний день не могут не впечатлять. Хотя в синем спектре перспективные OLED-материалы по-прежнему остаются наименее долговечными, срок их жизни составляет уже около 10 тыс. часов. А осенью прошлого года компании CDT удалось получить OLED-материал с синим свечением, время жизни которого составило 40 тыс. часов.


Экспериментальная часть

В рамках данной курсовой работы был исследован нафталин, в частности его электрические свойства. Сложность данного эксперимента заключалась в том, что почти все низкомолекулярные полупроводники, в том числе и нафталин, являются высокоомными проводниками. Поэтому сопротивление измерялось при больших температурах.

Образец нафталина был помещен в кювету из фторопласта. Используя мультиметр ММ-960, было измерено сопротивление органического полупроводника при различной температуре.

Полученные в ходе эксперимента результаты занесены в таблицу и по ним построен график зависимости логарифма электропроводности от обратной температуры 1/T.

Результаты измерений сопротивления при различных температурах.

опыта

Т, температура, К

R, сопротивление,

107 Ом

1/Т, 104/К

lnσ
1 483 1,73 48 -16,8
2 493 1,26 45 -15,8
3 503 0,91 43 -15,1
4 513 0,66 42 -14,7
5 523 0,49 40 -14,0
6 533 0,37 38 -13,3
7 543 0,27 37 -13,0
8 553 0,21 36 -12,6
9 563 0,16 34 -11,9
10 573 0,13 33 -11,6

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

рефераты
Новости