рефераты рефераты
Главная страница > Дипломная работа: Разработка систем передачи информации нового поколения  
Дипломная работа: Разработка систем передачи информации нового поколения
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Разработка систем передачи информации нового поколения

Параметры приёмника, определяемые пользователем:

Pd_deviceCapacitance    Емкость элемента = 50*10-15 Ф;

Pd_layerThickness Толщина Активной Области = 0.5*10-6 м;

Pd_absorptionCoeff Коэффициент поглощения = 0.68*106 1/м;

Pd_reflectivity Отражающая способность в фотодиоде = 0.04;

Pd_quantumEff Квантовая эффективность (КПД) = 0.8

Pd_lossGain Усиление или потери реакции фотодетектора = 0 дБ;

Pd_darkCurrent    Темновой ток = 1*10-6 A

Flt_bandwidth       Фильтр 3dB ширины диапазона = 10*109 Гц;

Flt_lossGain Усиление фильтра или потери = -3 дБ

Тестер передачи ошибочных битов

Эта модель вычисляет вероятность передачи ошибочных битов (BER) для входного электрический сигнала. Метод вычисления заключается в синхронизации входного электрического сигнала с соответствующим ему первоначальным двоичным сигналом, генерации данных глаза и получении вероятности передачи ошибочных битов. При этом блок BER имеет минимум два входа, на один из которых подаётся электрический сигнал от приемника, а на другой - соответствующий ему двоичный сигнал. Полученные данные могут буть сохранены в файле.

Чтобы улучшить точность вычислений BER, первый бит и последние три бита каждого входного сигнала игнорируются. Это делается для того, чтобы исключить определенные нефизические погрешности, которые могут присутствовать в этих разрядных периодах и которые привели бы к неправильным оценкам BER.

Параметры BER тестора определяемое пользователем:

TimingJitter Выбор времени принятия решения = 0 с;

DecisionLevelJitter Дрожание уровня принятия решений = 0В;

DecisionLevel Пороговое значение решения = 0В;

5.2 Результаты моделирования

В данном разделе представлены результаты моделирования нашей ВОЛС содержащей DWDM мультиплексор и EDFA усилитель.

На выходе источника излучения (CW лазера) мощность сигнала составляет 1мВт (0дбм). На выходе модулятора мощность сигнала составляет 3*10-4Вт, что соответствует ослаблению сигнала на 5дб. На выходе из модуляторов сигналы подаются на оптический мультиплексор, который «сшивает» их в единый сигнал (рис 5.2 глаз-диаграмма (а) и спектрограмма (б)). На спектрограмме видно, что разнос частот между каналами составляет 100 ГГц, каналы расположены в соответствии со стандартным канальным планом.

На выходе мультиплексора мощность сигнала составляет

8*10-5 Вт, т.е. мощность сигнала после мультиплексора уменьшилась на 6 дбм, таким образом модулятор с мультиплексором вносят ощутимые помехи, порядка 11 дбм.

Чтобы компенсировать потерянную мощность сигнала, перед вводом в волокно сигнал усиливаем с помощью усилителя мощности, выполненного на основе EDFA (Erbium - Dopped Fiber Amplifier)

Как видно усилитель мощности усиливает сигнал до уровня 2,5 мВт (~4дбм), что соответствует коэффициенту усиления 16 дБ. По расчетным данным дисперсионная длина волокна LEAFТМ на скорости 2.5 Гбит/с с DWDM уплотнением равна ~1750 км (L = 10500пс*нм / 6 пс*нм/км), т.е. дисперсия не является ограничением для ВОЛС в 550 км. Но для прохождения этой дистанции сигналу не хватает мощности. При увеличении мощности излучения лазера или увеличении коэффициента усиления EDFA в оптическом волокне начинают проявляться нелинейные эффекты, не желательные в нашем случае из-за ухудшения сигнала. Проблему потери мощности импульсов можно решить, используя тот же самый оптический усилитель EDFA в качестве линейного усилителя.

Оптический усилитель EDFA является 1R-регенератором, т.е. он восстанавливает только одну характеристику – мощность. Но в то же время он усиливает и шум, поэтому после EDFA отношение сигнал-шум уменьшается. При каскадном включении EDFA шумы накапливаются (5.4,б, г), что может привести к увеличению BER.

а) на выходе после волокна (110 км),

б) после усиления на первом линейном усилителе,

в) на выходе после волокна (220 км),

г) после усиления на втором линейном усилителе,

Мощность сигнала на выходе волокна (110 км) составляет 4.4*10-6Вт

(-23.5 дбм). После усиления на первом линейном усилителе мощность сигнала составляет 1.6*10-3Вт (~2дбм). Мощность сигнала на выходе волокна (220 км) составляет 2.8*10-6Вт (-25.5 дбм). После усиления на втором линейном усилителе мощность сигнала составляет 11*10-4Вт (~0,4дбм).

д) на выходе после волокна (330 км)

е) после усиления на третьем линейном усилителе

ж) на выходе после волокна (440 км)

и) после усиления на четвертом линейном усилителе

Мощность сигнала на выходе волокна (330 км) составляет 1.9*10-6Вт

(-27.5 дбм). После усиления на третьем линейном усилителе мощность сигнала составляет 7.5*10-4Вт (~-1.3дбм). Мощность сигнала на выходе волокна (440 км) составляет 1.3*10-6Вт (-28.8 дбм). После усиления на четвервом линейном усилителе мощность сигнала составляет 5*10-4Вт (~-3дбм).

Произведем оценку отношения сигнал/шум (S/N).

На выходе УМ мощность сигнала составляет – 5дбм. УМ и ПУ низкочувствительны к шумам, мощность шума на выходе УМ составляет

~-30дбм. Отсюда находим отношение сигнал/шум составляет ~ S/N = 5 - (-30) = 35дбм. ЛУ чувствителен к уровню шума и после каждого усиления отношение сигнал/шум уменьшается на 4дбм. После четвертого ЛУ отношение сигнал шум составляет S/N = 35 -16 = 19 дбм. Основная функция ПУ обеспечить требуемую мощность, и требуемое отношение сигнал/шум на входе приемника. Для стандарта STM-16 минимальное отношение сигнал/шум составляет - 18-21дб. Таким образом для ПУ достаточно оставить отношение сигнал/шум на прежнем уровне, обеспечив при этом требуемый уровень мощности сигнала на входе в приемник.

На рисунке 5.5 представлены спектр-диаграммы сигнала после прохождения 330 км и 550 км соответственно. Разнос между каналами составляет 100 ГГц что соответствует стандартному канальному плану. Из спектр-диаграммы видно, что спектр сигнала значительно сузился и по мере прохождения секции и потеря мощности сигнала составила порядка 27 дбм.

В нашем случае длина оптического волокна между линейными оптическими усилителями была выбрана равной 110 км. Это означает, что на всей длине регенерационного участка достаточно установить 1 усилитель мощности, 4 линейных усилителя и 1 предусилитель, что соответствует длине регенерационного участка 550 км. Это значение не превышает теоретическое значение длины регенерационного участка (~1700 км). На этом расстоянии BER = 2*10-14. Заданием данной работы было обеспечить BER=10-13 на расстоянии 550 км.

Рассмотрим сигналы, поступающие на вход 3R-регенераторов, а также на приемник.

Мощность сигнала на выходе оптического волокна (рис 5.7,а) составляет 9*10-7Вт (-30.4 дбм). Затем сигнал подается в предусилитель где усиливается на 30 дБ и подается на демультиплексор. В блоке демультиплексора единый световой поток разделяется на составляющие, т.е. на каждом выходе DEMUX выделяется своя длина волны. DEMUX тоже вносит свой вклад в ослабление сигнала порядка 6дб.(рис 5.7.б).

Рисунок 5.7 Глаз-диаграмма сигналов: а) на выходе волокна (550 км); б) на выходе демультиплексора (один из каналов).

После демультиплексирования (перед вводом излучения в приемник) мощность сигнала составляет 1.3*10-4Вт (-8.8 дбм) (рис 5.7). Чувствительность приемного оборудования для интерфейса STM16 составляет ~ -10 – -20дбм.Таким образом мы обеспечили необходимую для правильного детектирования мощность сигнала. Мощность детектированного сигнала составляет ~5*10-2Вт ~50мВт.

Произведем сравнение формы сигналов до входа в MUX и после выхода из DEMUX (рис 5.8). Полученный сигнал практически идентичен переданному сигналу, кроме, конечно, уровня мощности. Также заметны шумы, накопившиеся во время передачи по оптическому каналу, которые, в принципе не мешают нам детектировать принятый сигнал.

а)

 

б)

 

Рисунок 5.8 Осциллограммы сигналов: а) до входа в мультиплексор; б) после выхода из демультиплексора.

Детектирование принятого сигнала происходит в приемнике, который сам тоже является источником шума (рис 5.9).

Из рис 5.9 видно, что уровень вносимых потерь со стороны приемника ощутимый. Поэтому для уверенного детектирования нужен запас по фазе и амплитуде. Запас по фазе составляет 4*10-10, запас по амплитуде составляет 4.5*10-2Вт.

Как видим, для протяженной (магистральной) ВОЛС, налагаются жесткие требования как к интерфейсному оборудованию так и волокну. Для проектируемой ВОЛС основным ограничением является мощность. Исследуем зависимость коэффициента ошибок (BER) от затухания в оптическом волокне BERf (loss); от коэффициента усиления в линейном усилителе BERf (Gain); от скорости передачи BERf (bitrate).

Рисунок 5.10 График зависимости BERf (loss).

Как видим из рисунка 5.10 к оптическому волокну предьявляются жесткие требования по затуханию, так уже при б = 0,30 дб/км для магистральной ВОЛС(550км) и при скорости передачи 2,5Гбит/с, BER→ 0, что совершенно неприемлемо. Требованиям для данных типов систем отвечают NZDSF волокна, имеющие в третьем окне прозрачности затухание порядка 0,20- 0,25 дб/км. При проектировании ВОЛС я использовал одномодовое NZDSF волокно – LEAFТМ.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

рефераты
Новости