рефераты рефераты
Главная страница > Дипломная работа: Расчет спутниковой линии связи Алматы -Лондон  
Дипломная работа: Расчет спутниковой линии связи Алматы -Лондон
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Расчет спутниковой линии связи Алматы -Лондон

 

3.2 Уравнения связи для двух участков

Эквивалентная изотропно-излучаемая мощность (ЭИИМ) передающей станции

Е=РперŋперGпер                                                                          (1)

где Рпер — эффективная мощность сигнала на выходе передатчика;

ŋпер — коэффициент передачи (по мощности) волноводного тракта;

(КПД волноводного тракта) между передатчиком и антенной;

Gпер — коэффициент усиления передающей антенны относительно изотропного излучателя.

В техническом задании ЭИИМ задана.

Затухание энергии в свободном пространстве, определяемое уменьшением плотности потока мощности при удалении от излучателя оприделяется по формуле [1]

Lo= 16π²d²/λ²,                                                     (2)

где λ – длина волны (λ = с/f, с = 3*108 м);

d – наклонная дальность (расстояние между передающей и приемной антеннами)

Найдем значения L0 для обоих участков. Для этого сначала вычислим расстояние d. Так как спутник геостационарный, то величина d, км, называемая часто наклонной дальностью, рассчитывается по формуле (3)

d = 42164 [1-(0,151266 соs Ө)2]1/2-6378 sіn Ө,                  (3)

где Ө — угол места антенны земной станции, Ө1=38,5, Ө2=8 (находится из графика в приложении Б).

Для участка 1 :

d1=42164 [1-(0,151266 соs 38,5)2] 1/2 -6378 sіn 38,5 = 37897 км,

λ1=с/f=3*108 /6383*106=0,047 м,

Lo = 16π2 (37897*103 ) /(0,047) =1,02*1020 или 200дБ.

Для участка 2:

d2= 42164 [1-(0,151266 соs8)2]1/2-6378 sin 8 = 40800 км,

λ2 = с/f = 3*108 /3794*10б =0,079 м,

L0 = 16 π2 (40800*103)/(0,079) =3,98*1019 или 196дБ.

Здесь и далее величины, относящиеся к участку Земля — спутник, имеют индекс «1», относящиеся к участку спутник — Земля — индекс «2».

Кроме этих основных потерь, на трассе присутствуют и дополнительные потери Lдоп, которые будут вычислены в последующих пунктах; полное значение потерь на трассе L∑=L0 Lдоп.

Когда параметры антенны заданы в виде эффективной площади ее аппаратуры Sпр, связанной с коэффициентом усиления соотношением [1].

Gпр= 4πS пр / λ 2 ,

 Рпер = 4 πd2LдопРпр/GперSпрŋперŋпр                                                                                      (4)

Формула (4) позволяет определить необходимую мощность передатчика по заданному значению мощности сигнала на входе приемника. Отметим, что в нее не входит длина волны. Следовательно, когда передающая антенна имеет постоянный коэффициент усиления на всех частотах, а приемная — эффективную постоянную площадь аппаратуры (может эффективно работать по мере возрастания частоты), мощность сигнала на входе приемника в первом приближении не зависит от частоты (в действительности некоторая зависимость от частоты имеется, так как Lдоп в значительной степени определяется диапазоном частот).

При расчете линии часто оказывается заданной не мощность сигнала на входе приемника, а отношение сигнал-шум на входе приемника (Рс/Рш)вх, тогда в формулу (4) следует подставить Рпр = Рш (Рс/Рш)вх,где Рш — полная мощность шума на входе приемника.

Посколъку в диапазонах частот, где работают спутниковые системы, шумы, создаваемые различными источниками, имеют аддитивный характер, их суммарная мощность выражается формулой.

Рш = кТΣΔFш                                      (5)

где к = 1,38 * 10 -²³ Вт/Гц*град — постоянная Больцмана;

ТΣ — эквивалентная шумовая температура всей приемной системы с учетом внутренних и внешних шумов;

ΔFш — эквивалентная (энергетическая) шумовая полоса приемника.

Структурная схема и диаграмма уровней линии спутниковой связи, состоящей из двух участков, приведены на рисунке 3

Рисунок 3- Структурная схема и диаграмма уровней линии связи из двух участков

 


Воспользовавшись формулами (1), (5), для этих участков можно записать следующие соотношения: для участка Земля — спутник:

Рпер=(16π2d12L1допРш.б/λ12Gпер.з.Gпр.б.ŋпер.з.ŋпр.б.)(Рс/Рш)вх.б,

где Рш.б.=кТ∑бΔfш.б.;

для участка спутник — Земля:

Рпер б=(16π2d22L2допРш.з/λ22Gпер.б.Gпр.з.ŋпер.б.ŋпр.з.)(Рс/Рш)вх.з,

где Рш.з.=кТ∑зΔfш.з.;

Здесь и далее всем показателям, относящимся к земной аппаратуре, присваивается индекс «з», а показателям, относящимся к бортовой аппаратуре — индекс «б».

Чтобы перейти от уравнений для отдельных участков к общему уравнению для всей линии, необходимо установить связь между отношениями сигнал-шум на выходе линии и на каждом из участков.

В отсутствие обработки сигнала на борту происходит сложение шумов каждого из участков, при этом суммарное отношение сигнал-шум на конце линии связи.

(Рш/Рс) ∑ = (Рш/Рс)вх.б + (Рш/Рс)вх.з.                                          (6)

Очевидно, что отношение сигнал-шум на каждом из участков должно быть выше, чем на конце линии:

(Рс/Рш)вх.б=а(Рс/Рш) ∑, (Рс/Рш)вх.з, = b (Рс / Рш ) ∑ ,                  (7)

где а > 1 , b > 1 .

Из (6) и (7) следует, что

a = b/(b-1), b = а/(а-1).                                                       (8)

 Выражение (8) позволяют распределить заданное отношение (Рс/Рш)∑; по двум участкам линии связи. Например, задавшись превышением отношения сигнал-шум на участке спутник — Земля, равным 1 дБ (b=1,26), найдем, что необходимое превышение на участке Земля — спутник должно составлять 7 дБ (а≈5). Приведенное распределение коэффициентов запаса а и b предполагает, что полосы шумов бортового ретранслятора и земного приемника равны; если Δfш.з< Δfш.б, то мощность шума на входе бортового приемника следует вычислять в полосе Δfш.з.

С учетом изложенного уравнения для линии спутниковой связи, состоящей из двух участков, окончательно примут вид [3]:

для участка Земля — спутник

Pпер.з.=(16π2d12L1допкТ∑б.Δfш.з//λ12Gпер.з.Gпр.б.ŋпер.з.ŋпр.б.)а(Рс/Рш) ∑,            (9)

для участка спутник — Земля

Pпер.б.=(16π2d22L2допкТ∑б.Δfш.з//λ22Gпер.б.Gпр.з.ŋпер.б.ŋпр.з.)b(Рс/Рш)∑,         (10)


4 Прохождение сигналов в системах космической связи

На распространение радиоволн на линиях Земля — космос (или космос — Земля) заметное влияние оказывает атмосфера Земли — как ионосфера, так и тропосфера. Это влияние особенно заметно на частотах от 10 ГГц и выше, а также при малых углах прихода волны (малых углах места антенны земной станции)[4].

Влияние ионосферы может проявляться в поглощении энергии, дисперсии сигнала, т. е. неравномерном времени задержки в полосе, «мерцании» сигнала, вызванном рассеянием локальными нерегулярностями концентрации электронов, вращении плоскости поляризации линейно поляризованной волны (фарадеево вращение). Все эти эффекты обратно пропорциональны квадрату частоты сигнала, а дисперсия — кубу частоты. Поэтому космические службы, работающие на частотах выше 1 ГГц, могут не учитывать влияние ионосферы, за исключением вращения плоскости поляризации.

Изменение вращения носит регулярный характер, подчиняющийся суточному и сезонному ходу, циклам солнечной активности, а также подвержено значительным и непредсказуемым отклонениям от регулярного хода в малых процентах времени. Максимальная амплитуда вращения на частоте 1 ГГц может достигать 108° при угле места 30°, а на частотах 4,6 и 1,2 ГГц максимальные амплитуды достигали 9, 4 и 1° соответственно [5]. Применение круговой поляризации волны, как и в нашем случае позволяет полностью устранить влияние этого явления.

Изменения уровня сигнала могут быть вызваны интерференцией прямой волны и волны, отраженной от земной поверхности

Рисунок 4.Интерференция прямой волны и волны, отраженной от земной поверхности

Влияние тропосферы на распространение радиоволн на линиях Земля — Космос может проявляться во многих явлениях.

Изменения индекса рефракции в тропосфере и его нерегулярности могут вызывать дефокусировку луча антенны, изменения угла прихода волны, уменьшение эффективного усиления антенн, возникновение многолучевой структуры сигнала и «мерцание». Дефокусировка луча вызывает потери сигнала менее 0,4 дБ даже при угле места 3° и больших изменениях рефракции. По данным измерений изменения угла прихода волны, вызванные рефракцией, составляли около 0,65°, 0,35°. и 0,25° при углах места 1°, 3° и 5° соответственно в морской тропической атмосфере. В полярном континентном климате соответствующие значения были 0,44°; 0,25° и 0,17° [4]. С этим явлением можно не считаться, поскольку антенны земных станций обычно снабжены устройствами автоматического или ручного наведения по максимуму сигнала.

Явления многолучевости и «мерцания» сигнала не могут оказывать сколько-нибудь существенного влияния на его уровень и поэтому не учитываются. Наиболее существенное влияние тропосферы проявляется в поглощении энергии радиоволн в газах атмосферы, поглощении и деполяризации волны в гидрометеорах, особенно в дожде.

 

4.1 Расчет ослабления уровня сигнала в атмосфере

Основное поглощение энергии сигнала вызывают кислород и водяной пар. На рисунке 5 показаны теоретические зависимости погонного ослабления уровня сигнала у, дБ/км, от частоты при стандартном давлении воздуха, температуре 20°С и концентрации р водяного пара 7,5 г/м3.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

рефераты
Новости