рефераты рефераты
Главная страница > Дипломная работа: Механізм суперіонної провідності твердих діелектриків  
Дипломная работа: Механізм суперіонної провідності твердих діелектриків
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Механізм суперіонної провідності твердих діелектриків

Разом з тим, оскільки поряд з «розплавленою» розглянуті сполуки містять також тверду підрешітку, остільки їхньої властивості у визначеній. частині збігаються з властивостями традиційних кристалів. Так, у жорсткій підрешітці обов'язково існують (у дуже малій концентрації) власні чи теплові дефекти:

там можуть бути спеціально створені примісні точкові дефекти, завдяки чому іони, що утворюють жорстку підґратку, здобувають можливість переміщатися як у звичайних кристалах. Внесок цих іонів у результуючу іонну провідність, звичайно, мізерно малий. Проте вони можуть, зокрема, впливати на властивості границь розділу твердих електролітів з іншими середовищами (наприклад, металевими електродами) і брати участь у різних процесах поблизу цих границь (про що піде мова трохи нижче).

Повернемося, однак, до розупорядкованої підрешітки. Іони, що звільнилися, можуть під впливом теплових коливань переміщатися усередині твердого тіла, переносячи заряд і забезпечуючи тим самим іонну провідність. З урахуванням уже відомих даних про механізм руху іонів у твердих тілах можна стверджувати, що для реалізації швидкого іонного транспорту необхідне виконання декількох умов.

По-перше, у жорсткій структурі повинне міститися значно більше вакантних позицій, чим іонів, що можуть їх зайняти. Тільки в цьому випадку не буде гострої конкуренції за ці позиції й іони зможуть рухатися «не заважаючи» один одному.

По-друге, вакантні позиції повинні бути такими, щоб іони мали можливість без особливих утруднень переходити з однієї позиції в іншу. Іншими словами, енергетичні бар'єри між сусідніми еквівалентними положеннями не повинні бути занадто високими (тут доречно помітити, що «переборення» бар'єра — поняття відносне: чим вище температура, тим легше здійснюються перескоки; важливо, щоб ще до температури плавлення чи розпаду сполуки бар'єри між позиціями стали для іонів переборні).

Нарешті, по-третє, повинна існувати зв'язна сітка шляхів руху іонів у каркасі, створюваному жорскою підрешіткою, тобто вакантні і відносно легко доступні позиції повинні не групуватися окремими «островами», а як би просочувати весь матеріал. У противному випадку може мати місце лише велика частота перескоків між близькими позиціями без помітного іонного переносу заряду через провідник у цілому. При виконанні сформульованих умов рухливість іонів у твердому матеріалі виявляється досить високою — практично такою ж, як, наприклад, у воді. Якщо число рухливих іонів велике, то електрична іонна провідність цього матеріалу природнім чином виявляється близька до провідності концентрованого розчину рідкого електроліту. Тверде тіло, що володіє такими властивостями, є всі підстави називати твердим електролітом.В даний час синтезовано і вивчено безліч сполук, що володіють високою — більш 0,01 (Ом.см-1) – ионною провідністю, у яких носіями струму є позитивно заряджені іони срібла, міді, натрію, калію, літію, цинку, негативно заряджені іони фтору, брому, кисню і ряд інших іонів обох знаків. Сімейство твердих електролітів надзвичайно розширилося. Воно стало настільки ж численним (багато десятків поєднаннь), як і різноманітним, і має сенс ознайомитися з ним докладніше.

Почнемо знов-таки з «класичного» твердого електроліту Agl, що надає можливість найбільш чітко виявити структурні особливості, характерні для безлічі сполук такого роду. Високотемпературна α-модифікація йодистого срібла, у якій він має аномально високу іонну провідність, вивчена дуже детально. Перші результати з залученням рентгеноструктурного аналізу були отримані Штроком у 1934 р., тобто більш ніж через 20 років після виявлення дивних аномалій у поводженні цього матеріалу. Штрок працював з порошковими зразками, потім його дані неодноразово перевірялися й уточнювалися на монокристалах, а також із залученням нейтронографічних методів. Установлено, що в цілому ранні дослідження відтворюють правильну картину будови α-фази йодиду срібла, хоча. деякі деталі були, звичайно, уточнені.

Його тверда структура являє собою щільно упаковані аніони йоду І-, що утворюють об’ємно-центровану кубічну ґратку (мал. 12). Так званий елементарний осередок таких ґраток включає два іони — центральний іон куба і по 1/8 від кожного з восьми іонів у вершинах куба. Усі ґратки відтворюються трансляціями (повтореннями) елементарного осередку в трьох взаємно перпендикулярних напрямках.

Між відносно великими іонами йоду знаходиться велике число порожнеч, у яких можуть розташовуватися катіони срібла, що мають порівняно невеликі розміри (згадаємо про відносні розміри іонів хлору і натрію — див. мал. 8). Такі порожнечі мають близькі об’єми, але відрізняються формою, а також числом їхніх найближчих навколишніх іонів йоду (координаційним числом). На один елементарний осередок доводиться 6 позицій, що знаходяться між двома аніонами, тобто з подвійною координацією (вони називаються b-позиції), 12 позицій з чотириразовою координацією (d-позиції) і 24 позицій із триразовою координацією (h-позиції). Усього позицій 42, а оскільки на один елементарний осередок, що містить два аніони йоду, приходиться два катіони срібла, то на кожний катион срібла приходиться 21 позиція.

Найбільш тонким є питання про розподіл катіонів Ag+ по цих позиціях. Різні позиції мають різні координаційні числа, тому не потрібно затверджувати, що всі три групи цих позицій можуть бути зайняті катіонами срібла з рівною імовірністю. Спеціально проведені розрахунки показали, що потенційна енергія цих катіонів у позиціях різних типів повинна незначно розрізнятися — лише на величину, порівнянну з енергією теплових коливань. Але це означає, що імовірності їхнього заповнення повинні бути близький одне до одного.

Таким чином, структура йодиду срібла містить велике число більш-менш еквівалентних, причому геометрично близько розташованих одне до одного, місць (позицій) для іонів срібла. Саме у цьому випадку й утворяться траєкторії майже безперешкодного руху іонів від позиції до позиції. Це показують строгі обчислення, але якісно це зрозуміло і без розрахунків: спробуйте мисленно зблизити між собою «дрібні» ямки, зображені на мал. 4. Очевидно, що висота бар'єра між ямками зменшиться, одночасно зменшиться енергія активації, тим самим перехід іонів між ямками-міжвузіллями полегшиться. У результаті катіони срібла в α-фазі виявляються як би безупинно “кочують” по вільних позиціях у твердій підрешітці йоду. Деяке розходження в імовірностях перебування катіонів у позиціях різних типів означає просто різну відносну тривалість перебування їх у цих позиціях. Іншими словами, α-Ag являє собою яскравий приклад твердого електроліту (чи суперіонного провідника), що містить жорстку аніонну підрешітку, що занурена в катіонну рідину.


ПРАКТИЧНЕ ЗНАЧЕННЯ.ПЕРСПЕКТИВИ ВИКОРИСТАННЯ СУПЕРІОННИХ ПРОВІДНИКІВ

З розказаного чітко видно, що фізика і хімія твердого тіла зтикнулися з надзвичайно цікавими й у багатьох відноеннях унікальними за своїми властивостями об'єктами. Їх дослідження ставлять перед ученими ряд проблем, що безпосередньо торкаються принципових проблем теоретичної фізики і хімії твердого тіла, кристалографії, фізичної хімії, а також багатьох прикладних областей знання.Насамперед сюди відноситься ціле коло питань, зв'язаних з ефектом структурної неупорядкованості. Дослідження властивостей неупорядкованих середовищ, таких, наприклад, як рідких і аморфних напівпровідників і металів, зайняло одне з центральних місць у фізиці конденсованих середовищ. Крім практичної важливості цих матеріалів, їхнє всебічне дослідження представляє природну логічну ступінь у послідовності усе більш складних для вивчення об'єктів: ідеальний газ-ідеальний кристал-рідина.

Ідеальні кристали характеризуються строгою періодичністю (далеким порядком) у розташуванні молекул, атомів чи іонів. У неупорядкованих середовищах, зокрема, рідинах, далекий порядок у розташуванні часток відсутній. Суперіонні матеріали у надпровідній (електролітичній) фазі, вивчення якої саме по собі дуже важливе, представляють, крім того, своєрідний гібрид твердого тіла і рідини. Тому з позицій вивчення закономірностей конденсованих середовищ суперіонні провідники — дуже цікава ланка в згаданому ланцюзі об'єктів що ускладнюються: вони можуть розглядатися в деяких аспектах як структури, що заповнюють «щілину» між рідинами і кристалами, причому ступінь неупорядкованості цих структур контрольованим чиолм змінюється зі зміною температури.

Інша цікава проблема — термодинамічний опис фазових переходів. Стрибкоподібне температурна неупорядкованість однієї з підрешіток і одночасна перебудова із збереженням періодичної структуриіншої підрешітки являють собою при певних умовах накладання фазових переходів першого і другого роду. У теорії фазових переходів, як і в теорії неупорядкованих середовищ, досягнуто істотного прогресу. Суперіонні провідники являють собою трохи несподіваний і дуже нетрадиційний об'єкт для відпрацьовування й експериментальної перевірки сформованих в теорії фазових переходів, нових концепцій. Те ж саме відноситься і до теорії невипромінюючих переходів у конденсованих середовищах, безпосередньо зв'язаної з проблемою іонного транспорту в суперіонних провідниках, особливо з урахуванням взаємодії між іонами, що переміщаються.«Фізика сьогодення — це техніка майбутнього»,— писав академік А. Ф. Иоффе. Вивчення суперіонної провідності нині знаходиться саме на тій стадії, коли одержання суто наукових результатів природним шляхом «переливається» у можливість прикладного, практичного їхнього використання, завдяки чому тут реалізується винятково плідне злиття науки і технології, що зароджується. Таким чином, тверді електроліти природним чином висуваються як об'єкти экспериметального і теоретичного дослідження на одне із провідних місць.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8

рефераты
Новости