рефераты рефераты
Главная страница > Контрольная работа: Роль кислорода, света и звука в жизнедеятельности рыб  
Контрольная работа: Роль кислорода, света и звука в жизнедеятельности рыб
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: Роль кислорода, света и звука в жизнедеятельности рыб

Они образуют на поверхности водоема пленку, препятствующую нормальному газообмену между водой и атмосферой. Одна тонна нефти дает пленку в 10 км2.

Одновременно с этим нефтяная пленка затрудняет доступ солнечных лучей к фитопланктону, угнетая тем самым фотосинтез. Нефть и нефтепродукты подвергаются биохимическому окислению с интенсивным расходованием кислорода, ведущим к его дефициту в водоеме.

Нефть и нефтепродукты в количестве 15 мг/л абсолютно смертельны для всех живых существ, вызывая паралич дыхательных нервов.

Снижение фотосинтеза фитопланктоном и поверхностно-активные вещества (ПАВ), некоторые тяжелые металлы, многие пестициды.

Многие гербициды и альгициды оказывают угнетающее действие на процессы фотосинтеза низших и высших водных растений, снижая тем самым образование кислорода и его содержание в водоеме (Котляр, 2007).

Нулевое содержание кислорода отмечается при поступлении гербицидов (монурона и диурона) в водоемы с большой биомассой макрофитов или при интенсивном развитии синезеленых водорослей. Массовое развитие синезеленых водорослей и их последующее отмирание и разложение, связанное с огромным расходом кислорода, также ведут к его дефициту в водоеме и могут быть одной из причин гибели рыб в цветущих водоемах.

Рыбам вреден и избыток кислорода. При перенасыщении воды газами, рыба также перенасыщается газами. При этом выделение газовых пузырьков происходит в тканях рыб. Пузырьки рвут кожу и плавники, выдавливают глаза, закупоривают кровеносные сосуды (Баклашова, 1980).

Перенасыщение воды кислородом наблюдается в водоемах при сильном освещении и мощном развитии зеленых водорослей.


2. Роль света в жизнедеятельности рыб

рыба кислород свет звук жизнедеятельность

В жизни живых организмов наиболее важную роль играет ультрафиолетовое излучение в диапазоне 295-380 нм, видимая часть спектра и ближнее инфракрасное излучение с длиной волны до 1100 нм.

Процессы, протекающие под действием света в организме рыб, делятся на регуляторные, защитно-репаративные (возмещающие) и повреждающие. Два первых относятся к полезному эффекту световых воздействий, однако при определенных условиях могут приобретать противоположный характер повреждающего процесса (Котляр, 2007).

Характер изменения регуляторных процессов зависит от дозы облучения, стадии развития и состояния облучаемого объекта.

Так облучение эмбрионов ручьевой форели ультрафиолетом в течение 2-20 мин ускоряет развитие; 40 минутное облучение вызывает гибель после вылупления; 80-160 мин приводит к летальному исходу непосредственно после воздействия.

Свет влияет на сезонные и суточные ритмы жизнедеятельности, поведение, физиологическое состояние, окраску рыб.

Освещение имеет очень большое, как прямое, так и косвенное значение в жизни рыб. У большинства рыб орган зрения играет существенную роль при ориентировке во время движения, реакции на добычу, на хищника, на других особей того же вида в стае, на неподвижные предметы.

Рыбы, живущие в освещенном пространстве, ярко окрашены и хорошо различают цвета. Рыбы могут менять свою окраску в зависимости от цвета грунта и освещенности. Контролирует окраску зрительный нерв. Не различают цвет рыбы, живущие у дна (некоторые акулы, скаты, осетры).

Принято выделять следующие основные виды окраски рыб, являющихся приспособлением к определенным условиям мест обитания:

пелагическая (сине-зеленая спинка, серебристое брюшко);

зарослевая (коричневатая, зеленовато-желтоватая с полосами и разводами);

донная (темная спинка, светлое брюшко) (Котляр, 2007).

Основные отличия действия света на рыб от световых воздействий на наземных позвоночных связаны со спецификой среды обитания. Вода по сравнению с воздухом для световых волн является более плотной средой (в 800 раз). Так морская вода поверхностным слоем в один метр поглощает до 63% солнечного света, если вода прозрачна, и до 84% с повышенной мутностью. Даже в морях с наибольшей прозрачностью воды яркость освещения уменьшается с глубиной в среднем в 10 раз на каждые 50 м.

По горизонтали видимость снижается до нуля на расстоянии 10-20 м. Аналогичная картина наблюдается в пресноводных водоемах, где дальность распространения световых волн зависит от прозрачности воды, от угла падения солнечных лучей то есть от высоты стояния солнца над горизонтом. Лучше всего свет проникает в воду, когда солнце стоит в зените. Световой день в водной среде короче, чем на суше, а интенсивность светового излучения на разной глубине меняется в течение светлого времени суток. Особенно резко снижается естественная освещенность в закрытых помещениях, например на живорыбных заводах (Котляр, 2007).

По отношению к свету рыб делят на две большие группы:

1. Группа рыб, привлекаемая светом в промысловых количествах (рыбы, живущие в освещенном пространстве). Лучше всего эти рыбы привлекаются светом в период интенсивного питания (сельдевые, скумбриевые, корюшковые и т.д.).

Существуют три теории механизма привлечения светом (фототаксиса): теория Леба, теория Франца, теория Зуссер.

По теории Леба у рыб, обладающих двусторонней симметрией, при неравномерном освещении правого и левого глаза изменяется тонус мускулатуры и рыба вынуждена двигаться к источнику света, не обращая внимание на хищника и на жертву (Котляр, 2007) .

По Францу положительная реакция на свет выработалась у молоди на определенных этапах развития как защитная реакция от хищника и от заморов в придонных слоях.

По Зуссер свет необходим планктофагам для поиска и захвата пиши.

2. Группа рыб, не реагирующих на свет, живущих у дна и питающихся донными организмами (акулы, скаты, осетровые):

группа темнолюбивых рыб, ведущих сумеречный образ жизни;

группа рыб, уходящих от света (угорь, минога).

Лучше всего рыбы привлекаются импульсивным светом или движущимся светам вниз от его источника (так, как распространяются лучи солнца и луны) (Котляр, 2007).

3. Роль звука в жизнедеятельности рыб

Известно, что скорость распространения звука в воде в 4,5 раза больше, чем в воздухе (1500 м/сек). Поглощение звука в воде в тысячу раз меньше, чем в воздухе. Кроме того, в силу определенных гидрологических условий в морских водоемах могут создаваться гидрологические коридоры протяженностью в тысячи миль, где звук, отражаясь от стенок, практически не глохнет.

Киты, совершающие трансокеанические миграции, следуют этими гидрологическими коридорами, при этом самцы, двигающиеся впереди, постоянно «поют», издавая звуки мощностью 180 дцб.

Звукопроницаемость тканей рыб близка к звукопроницаемости воды, поэтому даже такой слаборазвитый орган слуха, как внутренне ухо, обеспечивает восприятие значительной информации из окружающей среды.

У рыб нет наружной слуховой раковины и среднего уха, однако имеется внутреннее ухо с лабиринтом и слуховой косточкой — отолитом. Со слухом связана нижняя часть лабиринта — саккулюс и лагена, а у сельдей, возможно, со слухом связан и утрикулюс.

В восприятии звука существенную роль играет плавательный пузырь, выполняющий роль резонатора. У карповых и некоторых других рыб плавательный пузырь связан с внутренним ухом системой косточек Веберова аппарата. У сельдевых, анабантид и мормирид воздушные пузыри связаны с лабиринтом непосредственно (Котляр, 2007).

Рыбы издают звуки силой от 20-50 Гц до 10-12 кГц и воспринимают как механические, так и инфразвуки (менее 20 Гц) и ультразвуки (более 20 кГц) органами боковой линии и слуховым лабиринтом.

Рыбы издают много разнообразных звуков. Они представляют собой колебания среды и являются результатами тех или иных движений тела рыбы или его частей. Некоторые звуки издаются рыбами специально для общения друг с другом. Есть звуки, сопровождающие жизнедеятельность рыб — это упругие волны и колебания, возникающие при плавании, питании, захвате воздуха, выдавливании воздуха из плавательного пузыря.

Спектр звуков, связанных с движением, носит шумовой характер.

Некоторые звуки связаны с газообменом. Многие виды рыб (карповые, лососевые, лабиринтовые) пользуются для дыхания и наполнения газового пузыря атмосферным воздухом.

Проталкивание воздуха через узкие отверстия (воздушный канал пузыря, пищевод, кишечник, анус) вызывает звуки, напоминающие слабый писк.

При захвате добычи хищниками (судаком, щукой и др.) раздается звук, напоминающий хлопок, удар или звук откупориваемой бутылки. Эти звуки имеют гидродинамические низкочастотные и высокочастотные компоненты от 100 Гц до 4 кГц.

Мирные и всеядные рыбы при питании издают звуки, напоминающие причмокивание или приглушенное цоканье. В результате перетирания пищи зубами возникают хрусты и скрежеты, зависящие от качества корма.

У ряда рыб органы, издающие звуки, достигли определенного совершенства. Специальные барабанные мышцы прикрепляются непосредственно к плавательному пузырю или к черепу и ребрам поблизости от плавательного пузыря и имеют высокую частоту сокращений. Барабанная дробь имеет спектр от 75 Гц до 2 кГц.

Барабанщиками являются многие пресноводные и морские рыбы, например угри, сомы, триглы, тресковые. Жаба-рыба имеет в пузыре перепонку с отверстием, при помощи которой она издает звуки, напоминающие гудки.

Акустическая активность рыб может иметь годовую и суточную динамику, может быть приурочена к нерестовому периоду. У некоторых рыб звуки издают только самцы (Котляр, 2007).

С целью идентификации рыб по их звукам при акустической разведке издаются специальные атласы с графическими записями характеристик звуков различных видов рыб.

Рыбы способны определять направление звука, причем и беспузырные (акулы), и без связи пузыря с лабиринтом (треска, пикша), и имеющие такую связь (сельдевые, карповые). Треска и пикша определяют направление на источник звука с точностью в 8-21°.

Страницы: 1, 2, 3

рефераты
Новости