рефераты рефераты
Главная страница > Курсовая работа: Моделирование рассеяния плоской упругой продольной волны на упругом однородном изотропном цилиндрическом слое  
Курсовая работа: Моделирование рассеяния плоской упругой продольной волны на упругом однородном изотропном цилиндрическом слое
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Моделирование рассеяния плоской упругой продольной волны на упругом однородном изотропном цилиндрическом слое


Произвольную плоскую волну можно разложить в спектр, то есть можно ее представить в виде суперпозиции плоских же гармонических волн. Поэтому имеет смысл изучать распространение гармонических волн. Зависимость от координат x,y в декартовой системе координат и времени t мы будем брать в виде экспоненты. Этот же результат можно получить, если применить к уравнениям Гельмгольца для потенциалов, записанным в декартовой системе координат, метод разделения переменных.

1.2 Граничные условия

Рассмотрим граничные условия на границе раздела сред при распространении упругой волны. Они заключаются в непрерывности компонент вектора смещения и непрерывности нормального  и касательных ,  компонент тензора напряжений при переходе через границу раздела сред.

В изотропной среде компоненты тензора напряжений  связаны с компонентами тензора деформаций  при помощи закона Гука (1.6), а компоненты тензора деформаций  связаны с компонентами вектора смещений  с помощью формулы (1.3). Рассмотрим цилиндрическую границу в цилиндрической системе координат. Если систему прямоугольных координат  выбрать таким образом, что ось z является осью цилиндра, то компоненты тензора напряжений выразятся через компоненты вектора смещения по формулам:


, (1.10)

где - нормальная компонента тензора напряжений,  - касательные компоненты,  и  - упругие константы Ламе.


2. РАССЕЯНИЕ ПЛОСКОЙ ПРОДОЛЬНОЙ УПРУГОЙ ВОЛНЫ ОДНОРОДНЫМ ИЗОТРОПНЫМ ЦИЛИНДРИЧЕСКИМ СЛОЕМ

2.1 Постановка задачи

Рассмотрим бесконечный изотропный полый круговой цилиндр с внешним радиусом  и внутренним - , модули упругости и плотность материала которого  . Цилиндрическая система координат  выбрана таким образом, что координатная ось z является осью вращения цилиндра. Будем считать, что окружающее и находящееся в полости упругие среды являются изотропными и однородными, имеющими плотности  и модули упругости ,  соответственно.

Пусть из полупространства  на упругий цилиндрический слой параллельно оси Ох в плоскости Оxy падает плоская упругая монохроматическая волна:

Определим отраженную от слоя и прошедшую через слой волны, а также найдем поле смещений внутри упругого слоя.

Фронт падающей волны перпендикулярен образующим цилиндра и поэтому задача является плоской, то есть смещения не зависят от координаты z.

Учтем, что в формуле , представляющей собой общее выражение для смещения, потенциал  в силу выбранной системы координат мы выбрали так, чтобы единственной отличной от нуля была компонента . Поэтому в силу линейности задачи мы можем рассматривать отдельно падение продольной волны , сдвиговой волны , где .

Мы осстановимся на рассмотрении рассеяния плоской продольной волны, представленной вектором падения: .

2.2 Рассеяние продольной волны

Пусть из внешнего пространства на упругий цилиндр перпендикулярно падает плоская упругая продольная волна, потенциал смещений которой равен:

,

где - волновой вектор,  - радиус-вектор,  - круговая частота. В дальнейшем временную зависимость  для простоты формул опускаем. В цилиндрической системе координат падающая волна может быть представлена в виде:

, (2.1)

где - волновое число равное модулю вектора , , - цилиндрическая функция Бесселя порядка n.

Определим отраженную от цилиндра и возбужденную в полости волны, а также найдем потенциалы смещений внутри слоя.

Вектор смещения в однородных изотропных средах также будет иметь всего две отличные от нуля компоненты:


 

Отраженная, возбужденная упругие волны, а также волны внутри однородного слоя являются решениями уравнений Гельмгольца. Причем их потенциалы также удовлетворяют уравнениям Гельмгольца и не зависят от координаты z. Следует иметь в виду, что вектор-функция  будет иметь лишь одну отличную от нуля компоненту , то есть .

Отраженная волна должна удовлетворять условиям излучения на бесконечности:

, (2.2)

а прошедшая волна – условию ограниченности. Поэтому потенциалы смещений этих волн будем искать в виде:

- для отраженной волны:

, (2.3)

- для возбужденной волны:

, (2.4)


- для волны внутри слоя:

 (2.5)

где , , , , , - волновые числа.

Заметим, что представления (2.3) - (2.5) можно получить, применив метод разделения переменных к уравнениям Гельмгольца для потенциалов в цилиндрической системе координат от двух переменных. Мы получим функции вида:

.

Для того, чтобы потенциал отраженной волны удовлетворял условию излучения на бесконечности, необходимо в качестве цилиндрической функции Бесселя  выбрать цилиндрическую функцию Ханкеля первого рода , в этом случае потенциалу соответствует расходящейся волне с учетом того, что временной множитель выбран в виде . Для того, чтобы потенциал прошедшей волны удовлетворял условию ограниченности, необходимо в качестве цилиндрической функции Бесселя  выбрать цилиндрическую функцию Бесселя первого рода .  - цилиндрическая функция Неймана.

Коэффициенты подлежат определению из граничных условий, которые заключаются в непрерывности смещений и напряжений на обеих поверхностях упругого слоя. Имеем:

при : , , , ;

при : , , , ; (2.6)

Страницы: 1, 2, 3, 4, 5

рефераты
Новости